SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Ashton Nicholas J)) pers:(Blennow Kaj 1958) srt2:(2022)"

Sökning: (WFRF:(Ashton Nicholas J)) pers:(Blennow Kaj 1958) > (2022)

  • Resultat 1-10 av 43
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ziff, O. J., et al. (författare)
  • Amyloid processing in COVID-19-associated neurological syndromes
  • 2022
  • Ingår i: Journal of Neurochemistry. - : Wiley. - 0022-3042 .- 1471-4159. ; 161:2, s. 146-157
  • Tidskriftsartikel (refereegranskat)abstract
    • SARS-CoV-2 infection can damage the nervous system with multiple neurological manifestations described. However, there is limited understanding of the mechanisms underlying COVID-19 neurological injury. This is a cross-sectional exploratory prospective biomarker cohort study of 21 patients with COVID-19 neurological syndromes (Guillain–Barre Syndrome [GBS], encephalitis, encephalopathy, acute disseminated encephalomyelitis [ADEM], intracranial hypertension, and central pain syndrome) and 23 healthy COVID-19 negative controls. We measured cerebrospinal fluid (CSF) and serum biomarkers of amyloid processing, neuronal injury (neurofilament light), astrocyte activation (GFAp), and neuroinflammation (tissue necrosis factor [TNF] ɑ, interleukin [IL]-6, IL-1β, IL-8). Patients with COVID-19 neurological syndromes had significantly reduced CSF soluble amyloid precursor protein (sAPP)-ɑ (p=0.004) and sAPPβ (p=0.03) as well as amyloid β (Aβ) 40 (p=5.2×10−8), Aβ42 (p=3.5×10−7), and Aβ42/Aβ40 ratio (p=0.005) compared to controls. Patients with COVID-19 neurological syndromes showed significantly increased neurofilament light (NfL, p=0.001) and this negatively correlated with sAPPɑ and sAPPβ. Conversely, GFAp was significantly reduced in COVID-19 neurological syndromes (p=0.0001) and this positively correlated with sAPPɑ and sAPPβ. COVID-19 neurological patients also displayed significantly increased CSF proinflammatory cytokines and these negatively correlated with sAPPɑ and sAPPβ. A sensitivity analysis of COVID-19-associated GBS revealed a non-significant trend toward greater impairment of amyloid processing in COVID-19 central than peripheral neurological syndromes. This pilot study raises the possibility that patients with COVID-19-associated neurological syndromes exhibit impaired amyloid processing. Altered amyloid processing was linked to neuronal injury and neuroinflammation but reduced astrocyte activation. (Figure presented.) © 2022 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.
  •  
2.
  • Ashton, Nicholas J., et al. (författare)
  • Differential roles of Aβ42/40, p-tau231 and p-tau217 for Alzheimer's trial selection and disease monitoring.
  • 2022
  • Ingår i: Nature medicine. - : Springer Science and Business Media LLC. - 1546-170X .- 1078-8956. ; 28:12, s. 2555-2562
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood biomarkers indicative of Alzheimer's disease (AD) pathology are altered in both preclinical and symptomatic stages of the disease. Distinctive biomarkers may be optimal for the identification of AD pathology or monitoring of disease progression. Blood biomarkers that correlate with changes in cognition and atrophy during the course of the disease could be used in clinical trials to identify successful interventions and thereby accelerate the development of efficient therapies. When disease-modifying treatments become approved for use, efficient blood-based biomarkers might also inform on treatment implementation and management in clinical practice. In the BioFINDER-1 cohort, plasma phosphorylated (p)-tau231 and amyloid-β42/40 ratio were more changed at lower thresholds of amyloid pathology. Longitudinally, however, only p-tau217 demonstrated marked amyloid-dependent changes over 4-6years in both preclinical and symptomatic stages of the disease, with no such changes observed in p-tau231, p-tau181, amyloid-β42/40, glial acidic fibrillary protein or neurofilament light. Only longitudinal increases of p-tau217 were also associated with clinical deterioration and brain atrophy in preclinical AD. The selective longitudinal increase of p-tau217 and its associations with cognitive decline and atrophy was confirmed in an independent cohort (Wisconsin Registry for Alzheimer's Prevention). These findings support the differential association of plasma biomarkers with disease development and strongly highlight p-tau217 as a surrogate marker of disease progression in preclinical and prodromal AD, with impact for the development of new disease-modifying treatments.
  •  
3.
  • Ferrari-Souza, J. P., et al. (författare)
  • Astrocyte biomarker signatures of amyloid-beta and tau pathologies in Alzheimer's disease
  • 2022
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 27:11, s. 4781-4789
  • Tidskriftsartikel (refereegranskat)abstract
    • Astrocytes can adopt multiple molecular phenotypes in the brain of Alzheimer's disease (AD) patients. Here, we studied the associations of cerebrospinal fluid (CSF) glial fibrillary acidic protein (GFAP) and chitinase-3-like protein 1 (YKL-40) levels with brain amyloid-beta (A beta) and tau pathologies. We assessed 121 individuals across the aging and AD clinical spectrum with positron emission tomography (PET) brain imaging for A beta ([F-18]AZD4694) and tau ([F-18]MK-6240), as well as CSF GFAP and YKL-40 measures. We observed that higher CSF GFAP levels were associated with elevated A beta-PET but not tau-PET load. By contrast, higher CSF YKL-40 levels were associated with elevated tau-PET but not A beta-PET burden. Structural equation modeling revealed that CSF GFAP and YKL-40 mediate the effects of A beta and tau, respectively, on hippocampal atrophy, which was further associated with cognitive impairment. Our results suggest the existence of distinct astrocyte biomarker signatures in response to brain A beta and tau accumulation, which may contribute to our understanding of the complex link between reactive astrogliosis heterogeneity and AD progression.
  •  
4.
  • Mila-Aloma, M., et al. (författare)
  • Plasma p-tau231 and p-tau217 as state markers of amyloid-beta pathology in preclinical Alzheimer's disease
  • 2022
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 28, s. 1797-1801
  • Tidskriftsartikel (refereegranskat)abstract
    • A comprehensive comparison of Alzheimer's disease blood biomarkers in cognitively unimpaired individuals reveals that plasma p-tau231 and p-tau217 capture very early A beta changes, showing promise as markers to enrich a preclinical population for Alzheimer's disease clinical trials Blood biomarkers indicating elevated amyloid-beta (A beta) pathology in preclinical Alzheimer's disease are needed to facilitate the initial screening process of participants in disease-modifying trials. Previous biofluid data suggest that phosphorylated tau231 (p-tau231) could indicate incipient A beta pathology, but a comprehensive comparison with other putative blood biomarkers is lacking. In the ALFA+ cohort, all tested plasma biomarkers (p-tau181, p-tau217, p-tau231, GFAP, NfL and A beta 42/40) were significantly changed in preclinical Alzheimer's disease. However, plasma p-tau231 reached abnormal levels with the lowest A beta burden. Plasma p-tau231 and p-tau217 had the strongest association with A beta positron emission tomography (PET) retention in early accumulating regions and associated with longitudinal increases in A beta PET uptake in individuals without overt A beta pathology at baseline. In summary, plasma p-tau231 and p-tau217 better capture the earliest cerebral A beta changes, before overt A beta plaque pathology is present, and are promising blood biomarkers to enrich a preclinical population for Alzheimer's disease clinical trials.
  •  
5.
  • Morrison, M. S., et al. (författare)
  • Ante-mortem plasma phosphorylated tau (181) predicts Alzheimer's disease neuropathology and regional tau at autopsy
  • 2022
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 145:10, s. 3546-3557
  • Tidskriftsartikel (refereegranskat)abstract
    • In one of the largest studies of its kind, Morrison et al. show that ante-mortem plasma phosphorylated-tau(181) concentrations accurately differentiate brain donors with and without autopsy-confirmed Alzheimer's disease. Blood tests could be a minimally invasive, cost-effective tool for the detection and monitoring of Alzheimer's disease. Blood-based biomarkers such as tau phosphorylated at threonine 181 (phosphorylated-tau(181)) represent an accessible, cost-effective and scalable approach for the in vivo detection of Alzheimer's disease pathophysiology. Plasma-pathological correlation studies are needed to validate plasma phosphorylated-tau(181) as an accurate and reliable biomarker of Alzheimer's disease neuropathological changes. This plasma-to-autopsy correlation study included participants from the Boston University Alzheimer's Disease Research Center who had a plasma sample analysed for phosphorylated-tau(181) between 2008 and 2018 and donated their brain for neuropathological examination. Plasma phosphorelated-tau(181) was measured with single molecule array technology. Of 103 participants, 62 (60.2%) had autopsy-confirmed Alzheimer's disease. Average time between blood draw and death was 5.6 years (standard deviation = 3.1 years). Multivariable analyses showed higher plasma phosphorylated-tau(181) concentrations were associated with increased odds for having autopsy-confirmed Alzheimer's disease [AUC = 0.82, OR = 1.07, 95% CI = 1.03-1.11, P < 0.01; phosphorylated-tau standardized (z-transformed): OR = 2.98, 95% CI = 1.50-5.93, P < 0.01]. Higher plasma phosphorylated-tau(181) levels were associated with increased odds for having a higher Braak stage (OR = 1.06, 95% CI = 1.02-1.09, P < 0.01) and more severe phosphorylated-tau across six cortical and subcortical brain regions (ORs = 1.03-1.06, P < 0.05). The association between plasma phosphorylated-tau(181) and Alzheimer's disease was strongest in those who were demented at time of blood draw (OR = 1.25, 95%CI = 1.02-1.53), but an effect existed among the non-demented (OR = 1.05, 95% CI = 1.01-1.10). There was higher discrimination accuracy for Alzheimer's disease when blood draw occurred in years closer to death; however, higher plasma phosphorylated-tau(181) levels were associated with Alzheimer's disease even when blood draw occurred >5 years from death. Ante-mortem plasma phosphorylated-tau(181) concentrations were associated with Alzheimer's disease neuropathology and accurately differentiated brain donors with and without autopsy-confirmed Alzheimer's disease. These findings support plasma phosphorylated-tau(181) as a scalable biomarker for the detection of Alzheimer's disease.
  •  
6.
  • Therriault, J., et al. (författare)
  • Biomarker modeling of Alzheimer’s disease using PET-based Braak staging
  • 2022
  • Ingår i: Nature Aging. - : Springer Science and Business Media LLC. - 2662-8465. ; 2:6, s. 526-535
  • Tidskriftsartikel (refereegranskat)abstract
    • Gold-standard diagnosis of Alzheimer’s disease (AD) relies on histopathological staging systems. Using the topographical information from [18F]MK6240 tau positron-emission tomography (PET), we applied the Braak tau staging system to 324 living individuals. We used PET-based Braak stage to model the trajectories of amyloid-β, phosphorylated tau (pTau) in cerebrospinal fluid (pTau181, pTau217, pTau231 and pTau235) and plasma (pTau181 and pTau231), neurodegeneration and cognitive symptoms. We identified nonlinear AD biomarker trajectories corresponding to the spatial extent of tau-PET, with modest biomarker changes detectable by Braak stage II and significant changes occurring at stages III–IV, followed by plateaus. Early Braak stages were associated with isolated memory impairment, whereas Braak stages V–VI were incompatible with normal cognition. In 159 individuals with follow-up tau-PET, progression beyond stage III took place uniquely in the presence of amyloid-β positivity. Our findings support PET-based Braak staging as a framework to model the natural history of AD and monitor AD severity in living humans.
  •  
7.
  • Gerards, M., et al. (författare)
  • Alzheimer's Disease Plasma Biomarkers Distinguish Clinical Diagnostic Groups in Memory Clinic Patients
  • 2022
  • Ingår i: Dementia and Geriatric Cognitive Disorders. - : S. Karger AG. - 1420-8008 .- 1421-9824. ; 51:2, s. 182-192
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Several recent research studies show high performance of blood biomarkers to identify Alzheimer's disease also in the pre-dementia mild cognitive impairment (MCI) stage, but data from the routine clinical care memory clinic setting are needed. Methods: We examined plasma samples of 144 memory clinic patients, including dementia of Alzheimer type (DAT, n = 54), MCI (n = 57), and subjective cognitive decline (SCD, n = 33), who either presented as self-referrals or were referred by general practitioners or neurologists or psychiatrists. The plasma biomarkers, amyloid-beta42 (Ass42), amyloid-beta40 (Ass40), phospho-Tau181 (pTau181), total-tau (tTau), and neurofilament light (NFL), as well as different ratios, were measured using the ultrasensitive single molecule array (Simoa) immunoassay technology. Statistical analysis including Kruskal-Wallis test, linear regression, and receiver operating characteristics analyses was performed. Results: Of the single markers, we observed statistically significant group effects of pTau181 (H(2) = 34.43, p < 0.001) and NFL (H(2) = 27.66, p < 0.001). All individual group comparisons of pTau181 were significant, while the contrast of SCD versus MCI for NFL was not significant. In addition, the ratios of Ass42/Ass40 (H(2) = 7.50, p = 0.02) and pTau181/Ass42 (H(2) = 25.26, p < 0.001) showed significant group effects with significant difference between all groups for pTau181/Ass42 and an SCD versus MCI difference for Ass42/Ass40. PTau181 showed the highest area under the curve of 0.85 for the discrimination of SCD and DAT with a sensitivity of 80% and a specificity of 79% at a cut-off of 12.2 pg/mL. Age influenced Ass42, Ass40, and NFL concentrations. Conclusion: Plasma pTau181 and NFL, as well as the ratios Ass42/Ass40 and pTau181/Ass42, are biomarkers, which can differentiate diagnostic groups in a memory clinic setting outside of research studies.
  •  
8.
  • Janelidze, Shorena, et al. (författare)
  • Detecting amyloid positivity in early Alzheimer's disease using combinations of plasma A beta 42/A beta 40 and p-tau
  • 2022
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:2, s. 283-293
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: We studied usefulness of combining blood amyloid beta A(beta)42/A beta 40, phosphorylated tau (p-tau)217, and neurofilament light (NfL) to detect abnormal brain A beta deposition in different stages of early Alzheimer's disease (AD). Methods: Plasma biomarkers were measured using mass spectrometry (A beta 42/A beta 40) and immunoassays (p-tau217 and NfL) in cognitively unimpaired individuals (CU, N = 591) and patients with mild cognitive impairment (MCI, N = 304) from two independent cohorts (BioFINDER-1, BioFINDER-2). Results: In CU, a combination of plasma A beta 42/A beta 40 and p-tau217 detected abnormal brain A beta status with area under the curve (AUC) of 0.83 to 0.86. In MCI, the models including p-tau217 alone or A beta 42/A beta 40 and p-tau217 had similar AUCs (0.86-0.88); however, the latter showed improved model fit. The models were implemented in an online application providing individualized risk assessments (https://brainapps.shinyappas.io/PredictAAbplasma/). Discussion:A combination of plasma A beta 42/A beta 40 and p-tau217 discriminated A beta status with relatively high accuracy, whereas p-tau217 showed strongest associations with A beta pathology in MCI but not in CU.
  •  
9.
  • Newcombe, Virginia F J, et al. (författare)
  • Post-acute blood biomarkers and disease progression in traumatic brain injury.
  • 2022
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 145:6, s. 2064-2076
  • Tidskriftsartikel (refereegranskat)abstract
    • There is substantial interest in the potential for traumatic brain injury to result in progressive neurological deterioration. While blood biomarkers such as glial fibrillary acid protein and neurofilament light have been widely explored in characterising acute traumatic brain injury, their use in the chronic phase is limited. Given increasing evidence that these proteins may be markers of ongoing neurodegeneration in a range of diseases, we examined their relationship to imaging changes and functional outcome in the months to years following traumatic brain injury. Two-hundred and three patients were recruited in two separate cohorts; six months post-injury (n=165); and >5 years post-injury (n=38; 12 of whom also provided data ∼8 months post-TBI). Subjects underwent blood biomarker sampling (n=199) and magnetic resonance imaging (n=172; including diffusion tensor imaging). Data from patient cohorts were compared to 59 healthy volunteers and 21 non-brain injury trauma controls. Mean diffusivity and fractional anisotropy were calculated in cortical grey matter, deep grey matter and whole brain white matter. Accelerated brain ageing was calculated at a whole brain level as the predicted age difference defined using T1-weighted images, and at a voxel-based level as the annualised Jacobian determinants in white matter and grey matter, referenced to a population of 652 healthy control subjects. Serum neurofilament light concentrations were elevated in the early chronic phase. While GFAP values were within the normal range at ∼8 months, many patients showed a secondary and temporally distinct elevations up to >5 years after injury. Biomarker elevation at six months was significantly related to metrics of microstructural injury on diffusion tensor imaging. Biomarker levels at ∼8 months predicted white matter volume loss at >5 years, and annualised brain volume loss between ∼8 months and 5 years. Patients who worsened functionally between ∼8 months and >5 years showed higher than predicted brain age and elevated neurofilament light levels. Glial fibrillary acid protein and neurofilament light levels can remain elevated months to years after traumatic brain injury, and show distinct temporal profiles. These elevations correlate closely with microstructural injury in both grey and white matter on contemporaneous quantitative diffusion tensor imaging. Neurofilament light elevations at ∼8 months may predict ongoing white matter and brain volume loss over >5 years of follow up. If confirmed, these findings suggest that blood biomarker levels at late time points could be used to identify traumatic brain injury survivors who are at high risk of progressive neurological damage.
  •  
10.
  • Picard, C., et al. (författare)
  • Apolipoprotein B is a novel marker for early tau pathology in Alzheimer's disease
  • 2022
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:5, s. 875-887
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction We examine the role of brain apolipoprotein B (apoB) as a putative marker of early tau pathology and cognitive decline. Methods Cerebrospinal fluid (CSF) samples from cognitively normal and Alzheimer's disease (AD) participants were collected to measure protein levels of apoB and AD biomarkers amyloid beta (A beta), t-tau and p-tau, as well as synaptic markers GAP43, SYNAPTOTAGMIN-1, synaptosome associated protein 25 (SNAP-25), and NEUROGRANIN. CSF apoB levels were contrasted with positron emission tomography (PET) scan measures of A beta (18F-NAV4694) and Tau (flortaucipir) along with cognitive assessment alterations over 6 to 8 years. Results CSF apoB levels were elevated in AD participants and correlated with t-tau, p-tau, and the four synaptic markers in pre-symptomatic individuals. In the latter, CSF apoB levels correlated with PET flortaucipir-binding in entorhinal, parahippocampal, and fusiform regions. Baseline CSF apoB levels were associated with longitudinal visuospatial cognitive decline. Discussion CSF apoB markedly associates with early tau dysregulation in asymptomatic subjects and identifies at-risk individuals predisposed to develop visuospatial cognitive decline over time.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 43

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy