SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Ashton Nicholas J)) pers:(Blennow Kaj 1958) srt2:(2023)"

Sökning: (WFRF:(Ashton Nicholas J)) pers:(Blennow Kaj 1958) > (2023)

  • Resultat 1-10 av 51
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ferrari-Souza, J. P., et al. (författare)
  • APOEε4 associates with microglial activation independently of Aβ plaques and tau tangles
  • 2023
  • Ingår i: Science Advances. - 2375-2548. ; 9:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Animal studies suggest that the apolipoprotein E epsilon 4 (APOE epsilon 4) allele is a culprit of early microglial activation in Alzheimer's disease (AD). Here, we tested the association between APOE epsilon 4 status and microglial activation in living individuals across the aging and AD spectrum. We studied 118 individuals with positron emission tomog-raphy for amyloid-beta (A beta; [18F]AZD4694), tau ([18F]MK6240), and microglial activation ([11C]PBR28). We found that APOE epsilon 4 carriers presented increased microglial activation relative to noncarriers in early Braak stage regions within the medial temporal cortex accounting for A beta and tau deposition. Furthermore, microglial acti-vation mediated the A beta-independent effects of APOE epsilon 4 on tau accumulation, which was further associated with neurodegeneration and clinical impairment. The physiological distribution of APOE mRNA expression predicted the patterns of APOE epsilon 4-related microglial activation in our population, suggesting that APOE gene expression may regulate the local vulnerability to neuroinflammation. Our results support that the APOE epsilon 4 genotype exerts A beta-independent effects on AD pathogenesis by activating microglia in brain regions associated with early tau deposition.
  •  
2.
  • Ashton, Nicholas J., et al. (författare)
  • Plasma and CSF biomarkers in a memory clinic: Head-to-head comparison of phosphorylated tau immunoassays
  • 2023
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:5, s. 1913-1924
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Direct comparisons of the main blood phosphorylated tau immunoassays in memory clinic populations are needed to understand possible differences. Methods In the BIODEGMAR study, 197 participants presenting with cognitive complaints were classified into an Alzheimer's disease (AD) or a non-AD cerebrospinal fluid (CSF) profile group, according to their amyloid beta 42/ phosphorylated tau (A beta 42/p-tau) ratio. We performed a head-to-head comparison of nine plasma and nine CSF tau immunoassays and determined their accuracy to discriminate abnormal CSF A beta 42/p-tau ratio. Results All studied plasma tau biomarkers were significantly higher in the AD CSF profile group compared to the non-AD CSF profile group and significantly discriminated abnormal CSF A beta 42/p-tau ratio. For plasma p-tau biomarkers, the higher discrimination accuracy was shown by Janssen p-tau217 (r = 0.76; area under the curve [AUC] = 0.96), ADx p-tau181 (r = 0.73; AUC = 0.94), and Lilly p-tau217 (r = 0.73; AUC = 0.94). Discussion Several plasma p-tau biomarkers can be used in a specialized memory clinic as a stand-alone biomarker to detect biologically-defined AD. Highlights Patients with an Alzheimer's disease cerebrospinal fluid (AD CSF) profile have higher plasma phosphorylated tau (p-tau) levels than the non-AD CSF profile group. All plasma p-tau biomarkers significantly discriminate patients with an AD CSF profile from the non-AD CSF profile group. Janssen p-tau217, ADx p-tau181, and Lilly p-tau217 in plasma show the highest accuracy to detect biologically defined AD. Janssen p-tau217, ADx p-tau181, Lilly p-tau217, Lilly p-tau181, and UGot p-tau231 in plasma show performances that are comparable to their CSF counterparts.
  •  
3.
  • Montoliu-Gaya, Laia, et al. (författare)
  • Plasma and cerebrospinal fluid glial fibrillary acidic protein levels in adults with Down syndrome: a longitudinal cohort study
  • 2023
  • Ingår i: eBioMedicine. - : Elsevier BV. - 2352-3964. ; 90
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The diagnosis of symptomatic Alzheimer's disease is a clinical challenge in adults with Down syndrome. Blood biomarkers would be of particular clinical importance in this population. The astrocytic Glial Fibrillary Acidic Protein (GFAP) isa marker of astrogliosis associated with amyloid pathology, but its longitudinal changes, association with other biomarkers and cognitive performance have not been studied in individuals with Down syndrome. Methods We performed a three-centre study of adults with Down syndrome, autosomal dominant Alzheimer's disease and euploid individuals enrolled in Hospital Sant Pau, Barcelona (Spain), Hospital Clinic, Barcelona (Spain) and Ludwig-Maximilians-Universitat, Munich (Germany). Cerebrospinal fluid (CSF) and plasma GFAP concentrations were quantified using Simoa. A subset of participants had PET 18F-fluorodeoxyglucose, amyloid tracers and MRI measurements. Findings This study included 997 individuals, 585 participants with Down syndrome, 61 Familial Alzheimer's disease mutation carriers and 351 euploid individuals along the Alzheimer's disease continuum, recruited between November 2008 and May 2022. Participants with Down syndrome were clinically classified at baseline as asymp-tomatic, prodromal Alzheimer's disease and Alzheimer's disease dementia. Plasma GFAP levels were significantly increased in prodromal and Alzheimer's disease dementia compared to asymptomatic individuals and increased in parallel to CSF A beta changes, ten years prior to amyloid PET positivity. Plasma GFAP presented the highest diagnostic performance to discriminate symptomatic from asymptomatic groups (AUC = 0.93, 95% CI 0.9-0.95) and its con-centrations were significantly higher in progressors vs non-progressors (p < 0.001), showing an increase of 19.8% (11.8-33.0) per year in participants with dementia. Finally, plasma GFAP levels were highly correlated with cortical thinning and brain amyloid pathology. Interpretation Our findings support the utility of plasma GFAP as a biomarker of Alzheimer's disease in adults with Down syndrome, with possible applications in clinical practice and clinical trials.
  •  
4.
  • Woo, M. S., et al. (författare)
  • 14-3-3 ζ/δ-reported early synaptic injury in Alzheimer's disease is independently mediated by sTREM2
  • 2023
  • Ingår i: Journal of Neuroinflammation. - 1742-2094. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Synaptic loss is closely associated with tau aggregation and microglia activation in later stages of Alzheimer's disease (AD). However, synaptic damage happens early in AD at the very early stages of tau accumulation. It remains unclear whether microglia activation independently causes synaptic cleavage before tau aggregation appears.Methods We investigated 104 participants across the AD continuum by measuring 14-3-3 zeta/delta (zeta/delta) as a cerebrospinal fluid biomarker for synaptic degradation, and fluid and imaging biomarkers of tau, amyloidosis, astrogliosis, neurodegeneration, and inflammation. We performed correlation analyses in cognitively unimpaired and impaired participants and used structural equation models to estimate the impact of microglia activation on synaptic injury in different disease stages.Results14-3-3 zeta/delta was increased in participants with amyloid pathology at the early stages of tau aggregation before hippocampal volume loss was detectable. 14-3-3 zeta/delta correlated with amyloidosis and tau load in all participants but only with biomarkers of neurodegeneration and memory deficits in cognitively unimpaired participants. This early synaptic damage was independently mediated by sTREM2. At later disease stages, tau and astrogliosis additionally mediated synaptic loss.ConclusionsOur results advertise that sTREM2 is mediating synaptic injury at the early stages of tau accumulation, underlining the importance of microglia activation for AD disease propagation.
  •  
5.
  • Bellaver, B., et al. (författare)
  • Astrocyte reactivity influences amyloid-beta effects on tau pathology in preclinical Alzheimer's disease
  • 2023
  • Ingår i: Nature Medicine. - 1078-8956. ; 29:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Cross-sectional and longitudinal analyses of tau pathology in preclinical Alzheimer's disease reveal that tau tangles accumulate as a function of amyloid-beta burden only in individuals positive for an astrocyte reactivity biomarker. An unresolved question for the understanding of Alzheimer's disease (AD) pathophysiology is why a significant percentage of amyloid-beta (A beta)-positive cognitively unimpaired (CU) individuals do not develop detectable downstream tau pathology and, consequently, clinical deterioration. In vitro evidence suggests that reactive astrocytes unleash A beta effects in pathological tau phosphorylation. Here, in a biomarker study across three cohorts (n = 1,016), we tested whether astrocyte reactivity modulates the association of A beta with tau phosphorylation in CU individuals. We found that A beta was associated with increased plasma phosphorylated tau only in individuals positive for astrocyte reactivity (Ast(+)). Cross-sectional and longitudinal tau-positron emission tomography analyses revealed an AD-like pattern of tau tangle accumulation as a function of A beta only in CU Ast(+) individuals. Our findings suggest astrocyte reactivity as an important upstream event linking A beta with initial tau pathology, which may have implications for the biological definition of preclinical AD and for selecting CU individuals for clinical trials.
  •  
6.
  • Ferrari-Souza, J. P., et al. (författare)
  • APOEε4 potentiates amyloid β effects on longitudinal tau pathology
  • 2023
  • Ingår i: Nature Aging. - 2662-8465. ; 3:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanisms by which the apolipoprotein E epsilon 4 (APOE epsilon 4) allele influences the pathophysiological progression of Alzheimer's disease (AD) are poorly understood. Here we tested the association of APOE epsilon 4 carriership and amyloid-beta (A beta) burden with longitudinal tau pathology. We longitudinally assessed 94 individuals across the aging and AD spectrum who underwent clinical assessments, APOE genotyping, magnetic resonance imaging, positron emission tomography (PET) for A beta ([F-18]AZD4694) and tau ([F-18]MK-6240) at baseline, as well as a 2-year follow-up tau-PET scan. We found that APOE epsilon 4 carriership potentiates A beta effects on longitudinal tau accumulation over 2 years. The APOE epsilon 4-potentiated A beta effects on tau-PET burden were mediated by longitudinal plasma phosphorylated tau at threonine 217 (p-tau217(+)) increase. This longitudinal tau accumulation as measured by PET was accompanied by brain atrophy and clinical decline. Our results suggest that the APOE epsilon 4 allele plays a key role in A beta downstream effects on the aggregation of phosphorylated tau in the living human brain.
  •  
7.
  • Lennol, M. P., et al. (författare)
  • Transient Changes in the Plasma of Astrocytic and Neuronal Injury Biomarkers in COVID-19 Patients without Neurological Syndromes
  • 2023
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1422-0067. ; 24:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The levels of several glial and neuronal plasma biomarkers have been found to increase during the acute phase in COVID-19 patients with neurological symptoms. However, replications in patients with minor or non-neurological symptoms are needed to understand their potential as indicators of CNS injury or vulnerability. Plasma levels of glial fibrillary acidic protein (GFAP), neurofilament light chain protein (NfL), and total Tau (T-tau) were determined by Single molecule array (Simoa) immunoassays in 45 samples from COVID-19 patients in the acute phase of infection [moderate (n = 35), or severe (n = 10)] with minor or non-neurological symptoms; in 26 samples from fully recovered patients after similar to 2 months of clinical follow-up [moderate (n = 23), or severe (n = 3)]; and in 14 non-infected controls. Plasma levels of the SARS-CoV-2 receptor, angiotensin-converting enzyme 2 (ACE2), were also determined by Western blot. Patients with COVID-19 without substantial neurological symptoms had significantly higher plasma concentrations of GFAP, a marker of astrocytic activation/injury, and of NfL and T-tau, markers of axonal damage and neuronal degeneration, compared with controls. All these biomarkers were correlated in COVID-19 patients at the acute phase. Plasma GFAP, NfL and T-tau levels were all normalized after recovery. Recovery was also observed in the return to normal values of the quotient between the ACE2 fragment and circulating full-length species, following the change noticed in the acute phase of infection. None of these biomarkers displayed differences in plasma samples at the acute phase or recovery when the COVID-19 subjects were sub-grouped according to occurrence of minor symptoms at re-evaluation 3 months after the acute episode (so called post-COVID or "long COVID"), such as asthenia, myalgia/arthralgia, anosmia/ageusia, vision impairment, headache or memory loss. Our study demonstrated altered plasma GFAP, NfL and T-tau levels in COVID-19 patients without substantial neurological manifestation at the acute phase of the disease, providing a suitable indication of CNS vulnerability; but these biomarkers fail to predict the occurrence of delayed minor neurological symptoms.
  •  
8.
  • Therriault, J., et al. (författare)
  • Equivalence of plasma p-tau217 with cerebrospinal fluid in the diagnosis of Alzheimer's disease
  • 2023
  • Ingår i: Alzheimers & Dementia. - 1552-5260. ; 19:11, s. 4967-4977
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: Plasma biomarkers are promising tools for Alzheimer's disease (AD) diagnosis, but comparisons with more established biomarkers are needed.METHODS: We assessed the diagnostic performance of p-tau(181), p-tau(217), and p-tau(231) in plasma and CSF in 174 individuals evaluated by dementia specialists and assessed with amyloid-PET and tau-PET. Receiver operating characteristic (ROC) analyses assessed the performance of plasma and CSF biomarkers to identify amyloid-PET and tau-PET positivity.RESULTS: Plasma p-tau biomarkers had lower dynamic ranges and effect sizes compared to CSF p-tau. Plasma p-tau(181) (AUC = 76%) and p-tau(231) (AUC = 82%) assessments performed inferior to CSF p-tau(181) (AUC = 87%) and p-tau(231) (AUC = 95%) for amyloid-PET positivity. However, plasma p-tau(217) (AUC = 91%) had diagnostic performance indistinguishable from CSF (AUC = 94%) for amyloid-PET positivity.DISCUSSION: Plasma and CSF p-tau(217) had equivalent diagnostic performance for biomarker-defined AD. Our results suggest that plasma p-tau(217) may help reduce the need for invasive lumbar punctures without compromising accuracy in the identification of AD.
  •  
9.
  • Yakoub, Y., et al. (författare)
  • Longitudinal blood biomarker trajectories in preclinical Alzheimer's disease
  • 2023
  • Ingår i: Alzheimers & Dementia. - 1552-5260. ; 19:12, s. 5620-5631
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Plasma biomarkers are altered years prior to Alzheimer's disease (AD) clinical onset. Methods: We measured longitudinal changes in plasma amyloid-beta (A beta)(42/40) ratio, pTau181, pTau231, neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP) in a cohort of older adults at risk of AD (n = 373 total, n = 229 with A beta and tau positron emission tomography [PET] scans) considering genetic and demographic factors as possible modifiers of these markers' progression. Results: A beta(42/40) ratio concentrations decreased, while NfL and GFAP values increased over the 4-year follow-up. Apolipoprotein E (APOE) epsilon 4 carriers showed faster increase in plasma pTau181 than non-carriers. Older individuals showed a faster increase in plasma NfL, and females showed a faster increase in plasma GFAP values. In the PET subsample, individuals both A beta-PET and tau-PET positive showed faster plasma pTau181 and GFAP increase compared to PET-negative individuals. Discussion: Plasma markers can track biological change over time, with plasma pTau181 and GFAP markers showing longitudinal change in individuals with preclinical AD.
  •  
10.
  • Yuan, J., et al. (författare)
  • Elevated plasma sclerostin is associated with high brain amyloid-β load in cognitively normal older adults
  • 2023
  • Ingår i: Npj Aging. - 2731-6068. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoporosis and Alzheimer's disease (AD) mainly affect older individuals, and the possibility of an underlying link contributing to their shared epidemiological features has rarely been investigated. In the current study, we investigated the association between levels of plasma sclerostin (SOST), a protein primarily produced by bone, and brain amyloid-beta (A ss) load, a pathological hallmark of AD. The study enrolled participants meeting a set of screening inclusion and exclusion criteria and were stratified into A ss(n = 65) and A ss+ (n = 35) according to their brain A ss load assessed using A ss-PET (positron emission tomography) imaging. Plasma SOST levels, apolipoprotein E gene (APOE) genotype and several putative AD blood-biomarkers including A ss 40, A ss 42, A ss 42/A ss 40, neurofilament light (NFL), glial fibrillary acidic protein (GFAP), total tau (t-tau) and phosphorylated tau (p-tau181 and p-tau231) were detected and compared. It was found that plasma SOST levels were significantly higher in the A ss+ group (71.49 +/- 25.00 pmol/L) compared with the A ss- group (56.51 +/- 22.14 pmol/L) (P < 0.01). Moreover, Spearman's correlation analysis showed that plasma SOST concentrations were positively correlated with brain A ss load (. = 0.321, P = 0.001). Importantly, plasma SOST combined with A ss 42/A ss 40 ratio significantly increased the area under the curve (AUC) when compared with using A ss 42/A ss 40 ratio alone (AUC = 0.768 vs 0.669, P = 0.027). In conclusion, plasma SOST levels are elevated in cognitively unimpaired older adults at high risk of AD and SOST could complement existing plasma biomarkers to assist in the detection of preclinical AD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 51

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy