SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Bengtsson Torbjörn)) srt2:(2010-2014)"

Sökning: (WFRF:(Bengtsson Torbjörn)) > (2010-2014)

  • Resultat 1-10 av 37
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abrikossova, Natalia, et al. (författare)
  • Effects of gadolinium oxide nanoparticles on the oxidative burst from human neutrophil granulocytes
  • 2012
  • Ingår i: Nanotechnology. - Bristol, United Kingdom : IOP Publishing Ltd.. - 0957-4484 .- 1361-6528. ; 23:27
  • Tidskriftsartikel (refereegranskat)abstract
    • We have previously shown that gadolinium oxide (Gd2O3) nanoparticles are promising candidates to be used as contrast agents in magnetic resonance (MR) imaging applications. In this study, these nanoparticles were investigated in a cellular system, as possible probes for visualization and targeting intended for bioimaging applications. We evaluated the impact of the presence of Gd2O3 nanoparticles on the production of reactive oxygen species (ROS) from human neutrophils, by means of luminol-dependent chemiluminescence. Three sets of Gd2O3 nanoparticles were studied, i.e. as synthesized, dialyzed and both PEG-functionalized and dialyzed Gd2O3 nanoparticles. In addition, neutrophil morphology was evaluated by fluorescent staining of the actin cytoskeleton and fluorescence microscopy. We show that surface modification of these nanoparticles with polyethylene glycol (PEG) is essential in order to increase their biocompatibility. We observed that the as synthesized nanoparticles markedly decreased the ROS production from neutrophils challenged with prey (opsonized yeast particles) compared to controls without nanoparticles. After functionalization and dialysis, more moderate inhibitory effects were observed at a corresponding concentration of gadolinium. At lower gadolinium concentration the response was similar to that of the control cells. We suggest that the diethylene glycol (DEG) present in the as synthesized nanoparticle preparation is responsible for the inhibitory effects on the neutrophil oxidative burst. Indeed, in the present study we also show that even a low concentration of DEG, 0.3%, severely inhibits neutrophil function. In summary, the low cellular response upon PEG-functionalized Gd2O3 nanoparticle exposure indicates that these nanoparticles are promising candidates for MR-imaging purposes.
  •  
2.
  • Ahrén, Maria, et al. (författare)
  • Synthesis and Characterization of PEGylated Gd2O3 Nanoparticles for MRI Contrast Enhancement
  • 2010
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 26:8, s. 5753-5762
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, much attention has been given to the development of biofunctionalized nanoparticles with magnetic properties for novel biomedical imaging. Guided, smart, targeting nanoparticulate magnetic resonance imaging (MRI) contrast agents inducing high MRI signal will be valuable tools for future tissue specific imaging and investigation of molecular and cellular events. In this study. We report a new design of functionalized ultrasmall rare earth based nanoparticles to be used as a positive contrast agent in NI RI. The relaxivity is compared to commercially available Gd based chelates. The synthesis, PEGylation, and dialysis of small (3-5 nm) gadolinium oxide (DEG-Gd2O3) nanoparticles are presented. The chemical and physical properties of the nanomaterial were investigated with Fourier transform infrared spectroscopy. X-ray photoelectron spectroscopy, transmission electron microscopy, and dynamic light scattering. Neutrophil activation after exposure to this nanomaterial was studied by means of fluorescence microscopy. The proton relaxation times as a function of dialysis time and functionalization were measured at 1.5 T. A capping procedure introducing stabilizing properties was designed and verified, and the dialysis effects were evaluated. A higher proton relaxivity was obtained for as-synthesized diethylene glycol (DEG)-Gd2O3 nanoparticles compared to commercial Gd-DTPA. A slight decrease of the relaxivity for as-synthesized DEG-Gd2O3 nanoparticles as a function of dialysis time was observed. The results for functionalized nanoparticles showed a considerable relaxivity increase for particles dialyzed extensively with r(1) and r(2) values approximately 4 times the corresponding values for Gd-DTPA. The microscopy study showed that PEGylated nanoparticles do not activate neutrophils in contrast to uncapped Gd2O3. Finally, the nanoparticles are equipped with Rhodamine to show that our PEGylated nanoparticles are available for further coupling chemistry, and thus prepared for targeting purposes. The long term goal is to design a powerful, directed contrast agent for MRI examinations with specific targeting possibilities and with properties inducing local contrast, that is. an extremely high MR signal at the cellular and molecular level.
  •  
3.
  • Bengtsson, Sara, 1978-, et al. (författare)
  • Brief but Chronic Increase in Allopregnanolone Cause Accelerated ADPathology Differently in Two Mouse Models
  • 2013
  • Ingår i: Current Alzheimer Research. - : Bentham Science Publishers. - 1567-2050. ; 10:1, s. 38-47
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract: Previously, we have shown that chronic treatment with allopregnanolone (ALLO) for three months impaired learning function in the Swe/PS1 mouse model. ALLO is a neurosteroid, produced in the CNS and a GABAA receptor agonist. ALLO modulates the general inhibitory system in the CNS by enhancing the effect of GABA. Chronic treatment with other GABAA receptor active compounds, such as benzodiazepines, ethanol and medroxy-progesterone acetate has been associated to cognitive decline and/or increased risk for dementia. In this study, we sufficed with a treatment period of one month for the Swe/PS1 mouse, and included another Alzheimer’s disease mouse model; the Swe/Arc model. We found that one month of chronic treatment with elevated ALLO levels within physiological range impaired learning and memory function in the Swe/Arc female and male mice. Male Swe/PS1 mice also showed marginally impaired function, while the female mice did not. Furthermore, the chronic ALLO treatment caused increased levels of soluble Aβ in the Swe/PS1 mouse model while the levels were unchanged in the Swe/Arc model. Therefore, both Swe/Arc and Swe/PS1 mice showed signs of accelerated disease progression. Still, further studies are required to determine the mechanisms behind the cognitive impairment and the increased Aβ-levels caused by mildly elevated ALLO-levels. learning function in the Swe/PS1 mouse model. ALLO is a neurosteroid, produced in the CNS and a GABAA receptor agonist. ALLO modulates the general inhibitory system in the CNS by enhancing the effect of GABA. Chronic treatment with other GABAA receptor active compounds, such as benzodiazepines, ethanol and medroxy-progesterone acetate has been associated to cognitive decline and/or increased risk for dementia. In this study, we sufficed with a treatment period of one month for the Swe/PS1 mouse, and included another Alzheimer’s disease mouse model; the Swe/Arc model. We found that one month of chronic treatment with elevated ALLO levels within physiological range impaired learning and memory function in the Swe/Arc female and male mice. Male Swe/PS1 mice also showed marginally impaired function, while the female mice did not. Furthermore, the chronic ALLO treatment caused increased levels of soluble Ab in the Swe/PS1 mouse model while the levels were unchanged in the Swe/Arc model. Therefore, both Swe/Arc and Swe/PS1 mice showed signs of accelerated disease progression. Still, further studies are required to determine the mechanisms behind the cognitive impairment and the increased Aβ-levels caused by mildly elevated ALLO-levels.
  •  
4.
  • Bengtsson, Sara K., et al. (författare)
  • Chronic Allopregnanolone Treatment Accelerates Alzheimer's Disease Development in A beta PP(Swe)PSEN1(Delta E9) Mice
  • 2012
  • Ingår i: Journal of Alzheimer's Disease. - 1387-2877 .- 1875-8908. ; 31:1, s. 71-84
  • Tidskriftsartikel (refereegranskat)abstract
    • The endogenous neurosteroid allopregnanolone alters neuronal excitability via modulation of the GABA(A) receptor and causes decreased neurotransmission. In Alzheimer's disease (AD), neurotransmission seems to alter the levels of toxic intracellular amyloid-beta (A beta) oligomers, which are implicated in AD pathogenesis and cause cognitive decline. Inhibition of synaptic activity has been shown to increase levels of intracellular A beta. Allopregnanolone at endogenous stress levels inhibits synaptic activity and could have similar effects. By using a transgenic A beta PP(Swe)PSEN1(Delta E9) mouse model for AD, we observed that chronic allopregnanolone treatment for three months with stress levels of allopregnanolone impaired learning in the Morris water maze. The learning impairment was seen one month after the end of treatment. Chronic allopregnanolone treatment also led to increased levels of soluble A beta in the brain, which could be a sign of advanced pathogenesis. Since the learning and memory of wild-type mice was not affected by the treatment, we propose that chronic allopregnanolone treatment accelerates the pathogenesis of AD. However, further studies are required in order to determine the underlying mechanism.
  •  
5.
  • Bengtsson, Sara, 1978- (författare)
  • Stress steroids as accelerators of Alzheimer's disease. : Effects of chronically elevated levels of allopregnanolone in transgenic AD models.
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Background Alzheimer’s disease (AD) and dementia are devastating con­ditions not only for the affected patients but also for their families.  The economical costs for the society are tremendous. Mid-life psychological stress, psychosocial stress and post-traumatic stress disorder cause cognitive dysfunction and lead to increased risk for dementia. However, the mecha­nisms behind stress-induced AD and dementia are not known. AD is char­acterized by solid amyloid plaques in the CNS. However, over the last decade it has been concluded that the levels of soluble beta-amyloid (Aβ) correlate to cognitive performance while plaques often do not. The soluble Aβ accu­mulate intracellularly and disturb the synaptic function. Interestingly, the levels of intracellular Aβ depend on neuronal activity. Previous studies have shown that decreased neuronal activity cause increased intracellular levels of Aβ and cognitive decline. Stress steroids produced in the brain, e.g. allopreg­nanolone, enhance the activity of the GABAergic system, i.e. the main in­hibitory system of the brain. Consequently, allopregnanolone affects neu­ronal activity. Therefore, it is possible that elevated levels of allopreg­nanolone (due to e.g. stress) cause increased intracellular levels of Aβ. This could be a mechanism behind stress-induced AD. The purpose of this thesis was to investigate if elevation of allopregnanolone is a possible link in the mechanism behind stress-induced AD by investigating the effects of chroni­cally elevated levels of allopregnanolone in transgenic mouse models for AD.Methods Swe/PS1 and Swe/Arc mice (transgenic models for AD) were treated chronically with elevated allopregnanolone levels, comparable to those at mild stress. After an interval of no treatment, the mice were tested for learning and memory performance in the Morris water maze. The brain tissue of the mice was then analyzed for disease markers, i.e. soluble and insoluble Aβ40 and Aβ42 using enzyme-linked immunosorbent assay, and amyloid plaques using immunohistochemistry and Congo red staining tech­nique. The brain tissue was also analyzed for a marker of synaptic function, i.e. synaptophysin.Results Chronic treatment of allopregnanolone caused impaired learning performance in both the Swe/PS1 and the Swe/Arc mouse models. The Swe/PS1 mice had increased levels of soluble Aβ in both hippocampus and cortex. Interestingly, the levels of soluble Aβ were unchanged in the Swe/Arc mice. Three months of allopregnanolone treatment in the Swe/PS1 mouse model caused decreased plaque size, predominantly in hippocampus. It may be concluded that chronic allopregnanolone elevation caused smaller but more abundant congophilic plaques as both total plaque area and number of plaques were increased in mice with poor learning ability. Additional spots for accumulation of Aβ, predominantly the more toxic Aβ42, and thus addi­tional starting points for plaque production could be a part of the mechanism behind stress-induced Alzheimer’s disease.Conclusions The conclusion of this thesis is that chronic elevation of allo­pregnanolon accelerated the development of Alzheimer’s disease in the Swe/PS1 and the Swe/Arc transgenic mouse models. Allopregnanolone may be an important link in the mechanism behind stress-induced AD. However, further studies are required to grasp the extent of its pathological influence.
  •  
6.
  • Bäckström, Torbjörn, et al. (författare)
  • Paradoxical effects of GABA-A modulators may explain sex steroid induced negative mood symptoms in some persons
  • 2011
  • Ingår i: Neuroscience. - Oxford : Elsevier BV. - 0306-4522 .- 1873-7544. ; 191:Special issue, s. 46-54
  • Forskningsöversikt (refereegranskat)abstract
    • Some women have negative mood symptoms, caused by progestagens in hormonal contraceptives or sequential hormone therapy or by progesterone in the luteal phase of the menstrual cycle, which may be attributed to metabolites acting on the GABA-A receptor. The GABA system is the major inhibitory system in the adult CNS and most positive modulators of the GABA-A receptor (benzodiazepines, barbiturates, alcohol, GABA steroids), induce inhibitory (e.g. anesthetic, sedative, anticonvulsant, anxiolytic) effects. However, some individuals have adverse effects (seizures, increased pain, anxiety, irritability, aggression) upon exposure. Positive GABA-A receptor modulators induce strong paradoxical effects including negative mood in 3%-8% of those exposed, while up to 25% have moderate symptoms. The effect is biphasic: low concentrations induce an adverse anxiogenic effect while higher concentrations decrease this effect and show inhibitory, calming properties. The prevalence of premenstrual dysphoric disorder (PMDD) is also 3%-8% among women in fertile ages, and up to 25% have more moderate symptoms of premenstrual syndrome (PMS). Patients with PMDD have severe luteal phase-related symptoms and show changes in GABA-A receptor sensitivity and GABA concentrations. Findings suggest that negative mood symptoms in women with PMDD are caused by the paradoxical effect of allopregnanolone mediated via the GABA-A receptor, which may be explained by one or more of three hypotheses regarding the paradoxical effect of GABA steroids on behavior: (1) under certain conditions, such as puberty, the relative fraction of certain GABA-A receptor subtypes may be altered, and at those subtypes the GABA steroids may act as negative modulators in contrast to their usual role as positive modulators; (2) in certain brain areas of vulnerable women the transmembrane C1(-) gradient may be altered by factors such as estrogens that favor excitability; (3) inhibition of inhibitory neurons may promote disinhibition, and hence excitability. This article is part of a Special Issue entitled: Neuroactive Steroids: Focus on Human Brain. (C) 2011 Published by Elsevier Ltd on behalf of IBRO.
  •  
7.
  • Börgeson, Emma, et al. (författare)
  • Lipoxin A(4) inhibits porphyromonas gingivalis-induced aggregation and reactive oxygen species production by modulating neutrophil-platelet interaction and CD11b expression
  • 2011
  • Ingår i: Infection and Immunity. - : American Society for Microbiology. - 0019-9567 .- 1098-5522. ; 79:4, s. 1489-1497
  • Tidskriftsartikel (refereegranskat)abstract
    • Porphyromonas gingivalis is an etiological agent that is strongly associated with periodontal disease, and it correlates with numerous inflammatory disorders, such as cardiovascular disease. Circulating bacteria may contribute to atherogenesis by promoting CD11b/CD18-mediated interactions between neutrophils and platelets, causing reactive oxygen species (ROS) production and aggregation. Lipoxin A(4) (LXA(4)) is an endogenous anti-inflammatory and proresolving mediator that is protective of inflammatory disorders. The aim of this study was to investigate the effect of LXA(4) on the P. gingivalis-induced activation of neutrophils and platelets and the possible involvement of Rho GTPases and CD11b/CD18 integrins. Platelet/leukocyte aggregation and ROS production was examined by lumiaggregometry and fluorescence microscopy. Integrin activity was studied by flow cytometry, detecting the surface expression of CD11b/CD18 as well as the exposure of the high-affinity integrin epitope, whereas the activation of Rac2/Cdc42 was examined using a glutathione S-transferase pulldown assay. The study shows that P. gingivalis activates Rac2 and Cdc42 and upregulates CD11b/CD18 and its high-affinity epitope on neutrophils, and that these effects are diminished by LXA(4). Furthermore, we found that LXA(4) significantly inhibits P. gingivalis-induced aggregation and ROS generation in whole blood. However, in platelet-depleted blood and in isolated neutrophils and platelets, LXA(4) was unable to inhibit either aggregation or ROS production, respectively. In conclusion, this study suggests that LXA(4) antagonizes P. gingivalis-induced cell activation in a manner that is dependent on leukocyte-platelet interaction, likely via the inhibition of Rho GTPase signaling and the downregulation of CD11b/CD18. These findings may contribute to new strategies in the prevention and treatment of periodontitis-induced inflammatory disorders, such as atherosclerosis.
  •  
8.
  • Fälker, Knut, 1971-, et al. (författare)
  • The Toll-like receptor 2/1 (TLR2/1) complex initiates human platelet activation via the src/Syk/LAT/PLC gamma 2 signalling cascade
  • 2014
  • Ingår i: Cellular Signalling. - New York, USA : Elsevier. - 0898-6568 .- 1873-3913. ; 26:2, s. 279-286
  • Tidskriftsartikel (refereegranskat)abstract
    • The specific TLR2/1 complex activator Pam3CSK4 has been shown to provoke prominent activation and aggregation of human non-nucleated platelets. As Pam3CSK4-evoked platelet activation does not employ the major signalling pathway established in nucleated immune cells, we investigated if the TLR2/1 complex on platelets may initiate signalling pathways known to be induced by physiological agonists such as collagen via GPVI or thrombin via PARs. We found that triggering TLR2/1 complex-signalling with Pam3CSK4, in common with that induced via GPVI, and in contrast to that provoked by PARS, involves tyrosine phosphorylation of the adaptor protein LAT as well as of PLC gamma 2 in a src- and Syk-dependent manner. In this respect, we provide evidence that Pam3CSK4 does not cross-activate GPVI. Further, by the use of platelets from a Glanzmann's thrombasthenia patient lacking beta(3), in contrast to findings in nucleated immune cells, we show that the initiation of platelet activation by Pam3CSK4 does not involve integrin beta(3) signalling; whereas the latter, subsequent to intermediate TXA2 synthesis and signalling, was found to be indispensable for proper dense granule secretion and full platelet aggregation. Together, our findings reveal that triggering the TLR2/1 complex with Pam3CSK4 initiates human platelet activation by engaging tyrosine kinases of the src family and Syk, the adaptor protein LAT, as well as the key mediator PLC gamma 2. (C) 2013 Elsevier Inc. All rights reserved.
  •  
9.
  • Jayaprakash, Kartheyaene, 1983-, et al. (författare)
  • Gingipains from Porphyromonas gingivalis play a significant role in induction and regulation of CXCL8 in THP-1 cells
  • 2014
  • Ingår i: BMC Microbiology. - : BioMed Central. - 1471-2180. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Porphyromonas gingivalis is an important bacterial etiological agent involved in periodontitis. The bacterium expresses two kinds of cysteine proteases called gingipains: arginine gingipains (RgpA/B) and lysine gingipain (Kgp). This study evaluated the interaction between P. gingivalis and THP-1 cells, a widely used monocytic cell line, in vitro with a focus on CXCL8 at the gene and protein levels and its fate thereafter in cell culture supernatants. THP-1 cells were stimulated with viable and heat-killed wild-type strains ATCC 33277 or W50 or viable isogenic gingipain mutants of W50, E8 (Rgp mutant) or K1A (Kgp mutant), for 24 hours.Results: ELISA and qPCR results show an elevated CXCL8 expression and secretion in THP-1 cells in response to P. gingivalis, where the heat-killed ATCC33277 and W50 induced higher levels of CXCL8 in comparison to their viable counterparts. Furthermore, the Kgp-deficient mutant K1A caused a higher CXCL8 response compared to the Rgp-deficient E8. Chromogenic quantification of lipopolysaccharide (LPS) in supernatant showed no significant differences between viable and heat killed bacteria except that W50 shed highest levels of LPS. The wild-type strains secreted relatively more Rgp during the co-culture with THP-1 cells. The CXCL8 degradation assay of filter-sterilized supernatant from heat-killed W50 treated cells showed that Rgp was most efficient at CXCL8 hydrolysis. Of all tested P. gingivalis strains, adhesion and internalization in THP-1 cells was least conspicuous by Rgp-deficient P. gingivalis (E8), as demonstrated by confocal imaging.Conclusions: W50 and its Kgp mutant K1A exhibit a higher immunogenic and proteolytic function in comparison to the Rgp mutant E8. Since K1A differs from E8 in the expression of Rgp, it is rational to conclude that Rgp contributes to immunomodulation in a more dynamic manner in comparison to Kgp. Also, W50 is a more virulent strain when compared to the laboratory strain ATCC33277.
  •  
10.
  • Khalaf, Hazem, 1981-, et al. (författare)
  • Altered T-cell responses by the periodontal pathogen Porphyromonas gingivalis
  • 2012
  • Ingår i: PLOS ONE. - San Francisco, USA : Public Library Science. - 1932-6203. ; 7:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Several studies support an association between the chronic inflammatory diseases periodontitis and atherosclerosis with a crucial role for the periodontal pathogen Porphyromonas gingivalis. However, the interplay between this pathogen and the adaptive immune system, including T-cells, is sparsely investigated. Here we used Jurkat T-cells to determine the effects of P. gingivalis on T-cell-mediated adaptive immune responses. We show that viable P. gingivalis targets IL-2 expression at the protein level. Initial cellular events, including ROS production and [Ca2+]i, were elevated in response to P. gingivalis, but AP-1 and NF-κB activity dropped below basal levels and T-cells were unable to sustain stable IL-2 accumulation. IL-2 was partially restored by Leupeptin, but not by Cathepsin B Inhibitor, indicating an involvement of Rgp proteinases in the suppression of IL-2 accumulation. This was further confirmed by purified Rgp that caused a dose-dependent decrease in IL-2 levels. These results provide new insights of how this periodontal pathogen evades the host adaptive immune system by inhibiting IL-2 accumulation and thus attenuating T-cell proliferation and cellular communication.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 37
Typ av publikation
tidskriftsartikel (28)
doktorsavhandling (4)
rapport (2)
bok (1)
annan publikation (1)
forskningsöversikt (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (27)
övrigt vetenskapligt/konstnärligt (8)
populärvet., debatt m.m. (2)
Författare/redaktör
Bengtsson, Torbjörn, ... (18)
Bengtsson, Torbjörn (8)
Skoglund, Caroline (6)
Lönn, Johanna, 1982- (6)
Nayeri, Fariba (5)
Bäckström, Torbjörn (5)
visa fler...
Skoglund, Caroline, ... (3)
Wetterö, Jonas (3)
Grenegård, Magnus (3)
Abrikossova, Natalia (2)
Ahrén, Maria (2)
Uvdal, Kajsa (2)
Bengtsson, Jan (2)
Rydhmer, Lotta (2)
Öborn, Ingrid (2)
Lönn, Johanna (2)
Magnusson, Ulf (2)
Jansson, Torbjörn (2)
Jensen, Erik Steen (2)
Olsson, Hans (1)
Lerm, Maria (1)
Engström, Maria (1)
Brudin, Lars (1)
Almroth, Gabriel (1)
Tengvall, Pentti (1)
Uhlin, Fredrik (1)
Turkmen, Sahruh (1)
Selegård, Linnéa (1)
Söderlind, Fredrik (1)
Käll, Per-Olov (1)
Klasson, Anna (1)
Lindahl, Tomas (1)
Almer, Sven (1)
Erlinge, David, Prof ... (1)
Särndahl, Eva, 1963- (1)
Hedenus, Fredrik, 19 ... (1)
Kruse, Robert, 1972- (1)
Nyberg, S (1)
Jansson, Jan-Håkan (1)
Strömberg, J (1)
Gustafsson, Anders, ... (1)
Ramström, Sofia, 197 ... (1)
Andréen, Lotta (1)
Lindholm Schulz, Hel ... (1)
Särndahl, Eva (1)
Demirel, Isak, 1987- (1)
Grenegård, Magnus, 1 ... (1)
Venizelos, Nikolaos, ... (1)
Westin, Charles (1)
Basic, Vladimir T., ... (1)
visa färre...
Lärosäte
Örebro universitet (26)
Linköpings universitet (18)
Umeå universitet (6)
Göteborgs universitet (2)
Chalmers tekniska högskola (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (36)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (17)
Naturvetenskap (8)
Lantbruksvetenskap (2)
Teknik (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy