SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(WFRF:(Bick D.)) srt2:(2023)"

Search: (WFRF:(Bick D.)) > (2023)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Weinstock, Joshua S, et al. (author)
  • Aberrant activation of TCL1A promotes stem cell expansion in clonal haematopoiesis.
  • 2023
  • In: Nature. - 1476-4687. ; 616:7958, s. 755-763
  • Journal article (peer-reviewed)abstract
    • Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis1. These lesions are precursors for blood cancers2-6, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, butthis effect was not seen inclones withdriver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimentalknockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.
  •  
2.
  • Gumuser, Esra D., et al. (author)
  • Clonal Hematopoiesis of Indeterminate Potential Predicts Adverse Outcomes in Patients With Atherosclerotic Cardiovascular Disease
  • 2023
  • In: Journal of the American College of Cardiology. - 0735-1097. ; 81:20, s. 1996-2009
  • Journal article (peer-reviewed)abstract
    • Background: Clonal hematopoiesis of indeterminate potential (CHIP)—the age-related clonal expansion of blood stem cells with leukemia-associated mutations—is a novel cardiovascular risk factor. Whether CHIP remains prognostic in individuals with established atherosclerotic cardiovascular disease (ASCVD) is less clear. Objectives: This study tested whether CHIP predicts adverse outcomes in individuals with established ASCVD. Methods: Individuals aged 40 to 70 years from the UK Biobank with established ASCVD and available whole-exome sequences were analyzed. The primary outcome was a composite of ASCVD events and all-cause mortality. Associations of any CHIP (variant allele fraction ≥2%), large CHIP clones (variant allele fraction ≥10%), and the most commonly mutated driver genes (DNMT3A, TET2, ASXL1, JAK2, PPM1D/TP53 [DNA damage repair genes], and SF3B1/SRSF2/U2AF1 [spliceosome genes]) with incident outcomes were compared using unadjusted and multivariable-adjusted Cox regression. Results: Of 13,129 individuals (median age: 63 years) included, 665 (5.1%) had CHIP. Over a median follow-up of 10.8 years, any CHIP and large CHIP at baseline were associated with adjusted HRs of 1.23 (95% CI: 1.10-1.38; P < 0.001) and 1.34 (95% CI: 1.17-1.53; P < 0.001), respectively, for the primary outcome. TET2 and spliceosome CHIP, especially large clones, were most strongly associated with adverse outcomes (large TET2 CHIP: HR: 1.89; 95% CI: 1.40-2.55; P <0.001; large spliceosome CHIP: HR: 3.02; 95% CI: 1.95-4.70; P < 0.001). Conclusions: CHIP is independently associated with adverse outcomes in individuals with established ASCVD, with especially high risks observed in TET2 and SF3B1/SRSF2/U2AF1 CHIP.
  •  
3.
  •  
4.
  • Yu, Zhi, et al. (author)
  • Genetic modification of inflammation- and clonal hematopoiesis-associated cardiovascular risk
  • 2023
  • In: Journal of Clinical Investigation. - 0021-9738. ; 133:18
  • Journal article (peer-reviewed)abstract
    • Clonal hematopoiesis of indeterminate potential (CHIP) is associated with an increased risk of cardiovascular diseases (CVDs), putatively via inflammasome activation. We pursued an inflammatory gene modifier scan for CHIP-associated CVD risk among 424,651 UK Biobank participants. We identified CHIP using whole-exome sequencing data of blood DNA and modeled as a composite, considering all driver genes together, as well as separately for common drivers (DNMT3A, TET2, ASXL1, and JAK2). We developed predicted gene expression scores for 26 inflammasome-related genes and assessed how they modify CHIP-associated CVD risk. We identified IL1RAP as a potential key molecule for CHIP-associated CVD risk across genes and increased AIM2 gene expression leading to heightened JAK2- and ASXL1-associated CVD risk. We show that CRISPR-induced Asxl1-mutated murine macrophages had a particularly heightened inflammatory response to AIM2 agonism, associated with an increased DNA damage response, as well as increased IL-10 secretion, mirroring a CVDprotective effect of IL10 expression in ASXL1 CHIP. Our study supports the role of inflammasomes in CHIP-associated CVD and provides evidence to support gene-specific strategies to address CHIP-associated CVD risk.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view