SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Bohgard Mats)) pers:(Gudmundsson Anders) srt2:(2015-2019)"

Sökning: (WFRF:(Bohgard Mats)) pers:(Gudmundsson Anders) > (2015-2019)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Dierschke, Katrin, et al. (författare)
  • Acute respiratory effects and biomarkers of inflammation due to welding-derived nanoparticle aggregates
  • 2017
  • Ingår i: International Archives of Occupational and Environmental Health. - : Springer Science and Business Media LLC. - 0340-0131 .- 1432-1246. ; 90:5, s. 451-463
  • Tidskriftsartikel (refereegranskat)abstract
    • Welders are exposed to airborne particles from the welding environment and often develop symptoms work-related from the airways. A large fraction of the particles from welding are in the nano-size range. In this study we investigate if the welders' airways are affected by exposure to particles derived from gas metal arc welding in mild steel in levels corresponding to a normal welding day. In an exposure chamber, 11 welders with and 10 welders without work-related symptoms from the lower airways and 11 non-welders without symptoms, were exposed to welding fumes (1 mg/m(3)) and to filtered air, respectively, in a double-blind manner. Symptoms from eyes and upper and lower airways and lung function were registered. Blood and nasal lavage (NL) were sampled before, immediately after and the morning after exposure for analysis of markers of oxidative stress. Exhaled breath condensate (EBC) for analysis of leukotriene B4 (LT-B4) was sampled before, during and immediately after exposure. No adverse effects of welding exposure were found regarding symptoms and lung function. However, EBC LT-B4 decreased significantly in all participants after welding exposure compared to filtered air. NL IL-6 increased immediately after exposure in the two non-symptomatic groups and blood neutrophils tended to increase in the symptomatic welder group. The morning after, neutrophils and serum IL-8 had decreased in all three groups after welding exposure. Remarkably, the symptomatic welder group had a tenfold higher level of EBC LT-B4 compared to the two groups without symptoms. Despite no clinical adverse effects at welding, changes in inflammatory markers may indicate subclinical effects even at exposure below the present Swedish threshold limit (8 h TWA respirable dust).
  •  
4.
  •  
5.
  •  
6.
  • Isaxon, Christina, et al. (författare)
  • Contribution of indoor-generated particles to residential exposure
  • 2015
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 106, s. 458-466
  • Tidskriftsartikel (refereegranskat)abstract
    • The majority of airborne particles in residences, when expressed as number concentrations, are generated by the residents themselves, through combustion/thermal related activities. These particles have a considerably smaller diameter than 2.5 mu m and, due to the combination of their small size, chemical composition (e.g. soot) and intermittently very high concentrations, should be regarded as having potential to cause adverse health effects. In this study, time resolved airborne particle measurements were conducted for seven consecutive days in 22 randomly selected homes in the urban area of Lund in southern Sweden. The main purpose of the study was to analyze the influence of human activities on the concentration of particles in indoor air. Focus was on number concentrations of particles with diameters <300 nm generated by indoor activities, and how these contribute to the integrated daily residential exposure. Correlations between these particles and soot mass concentration in total dust were also investigated. It was found that candle burning and activities related to cooking (using a frying pan, oven, toaster, and their combinations) were the major particle sources. The frequency of occurrence of a given concentration indoors and outdoors was compared for ultrafine particles. Indoor data was sorted into non-occupancy and occupancy time, and the occupancy time was further divided into non-activity and activity influenced time. It was found that high levels (above 10(4) cm(-3)) indoors mainly occur during active periods of occupancy, while the concentration during non-activity influenced time differs very little from non-occupancy time. Total integrated daily residential exposure of ultrafine particles was calculated for 22 homes, the contribution from known activities was 66%, from unknown activities 20%, and from background/non-activity 14%. The collected data also allowed for estimates of particle source strengths for specific activities, and for some activities it was possible to estimate correlations between the number concentration of ultrafine particles and the mass concentration of soot in total dust in 10 homes. Particle source strengths (for 7 specific activities) ranged from 1.6.10(12) to 4.5.10(12) min(-1). The correlation between ultrafine particles and mass concentration of soot in total dust varied between 0.37 and 0.85, with an average of 0.56 (Pearson correlation coefficient). This study clearly shows that due to the importance of indoor sources, residential exposure to ultrafine particles cannot be characterized by ambient measurements alone. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
  •  
7.
  • Ludvigsson, Linus, et al. (författare)
  • Carbon Nanotube Emissions from Arc Discharge Production: Classification of Particle Types with Electron Microscopy and Comparison with Direct Reading Techniques.
  • 2016
  • Ingår i: Annals of Occupational Hygiene. - : Oxford University Press (OUP). - 1475-3162 .- 0003-4878. ; 60:4, s. 493-512
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: An increased production and use of carbon nanotubes (CNTs) is occurring worldwide. In parallel, a growing concern is emerging on the adverse effects the unintentional inhalation of CNTs can have on humans. There is currently a debate regarding which exposure metrics and measurement strategies are the most relevant to investigate workplace exposures to CNTs. This study investigated workplace CNT emissions using a combination of time-integrated filter sampling for scanning electron microscopy (SEM) and direct reading aerosol instruments (DRIs). Material and Methods: Field measurements were performed during small-scale manufacturing of multiwalled carbon nanotubes using the arc discharge technique. Measurements with highly time- and size-resolved DRI techniques were carried out both in the emission and background (far-field) zones. Novel classifications and counting criteria were set up for the SEM method. Three classes of CNT-containing particles were defined: type 1: particles with aspect ratio length:width >3:1 (fibrous particles); type 2: particles without fibre characteristics but with high CNT content; and type 3: particles with visible embedded CNTs. Results: Offline sampling using SEM showed emissions of CNT-containing particles in 5 out of 11 work tasks. The particles were classified into the three classes, of which type 1, fibrous CNT particles contributed 37%. The concentration of all CNT-containing particles and the occurrence of the particle classes varied strongly between work tasks. Based on the emission measurements, it was assessed that more than 85% of the exposure originated from open handling of CNT powder during the Sieving, mechanical work-up, and packaging work task. The DRI measurements provided complementary information, which combined with SEM provided information on: (i) the background adjusted emission concentration from each work task in different particle size ranges, (ii) identification of the key procedures in each work task that lead to emission peaks, (iii) identification of emission events that affect the background, thereby leading to far-field exposure risks for workers other than the operator of the work task, and (iv) the fraction of particles emitted from each source that contains CNTs. Conclusions: There is an urgent need for a standardized/harmonized method for electron microscopy (EM) analysis of CNTs. The SEM method developed in this study can form the basis for such a harmonized protocol for the counting of CNTs. The size-resolved DRI techniques are commonly not specific enough to selective analysis of CNT-containing particles and thus cannot yet replace offline time-integrated filter sampling followed by SEM. A combination of EM and DRI techniques offers the most complete characterization of workplace emissions of CNTs today.
  •  
8.
  • Svensson, Christian, et al. (författare)
  • Validation of an air–liquid interface toxicological set-up using Cu, Pd, and Ag well-characterized nanostructured aggregates and spheres
  • 2016
  • Ingår i: Journal of Nanoparticle Research. - : Springer Science and Business Media LLC. - 1388-0764 .- 1572-896X. ; 18:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract: Systems for studying the toxicity of metal aggregates on the airways are normally not suited for evaluating the effects of individual particle characteristics. This study validates a set-up for toxicological studies of metal aggregates using an air–liquid interface approach. The set-up used a spark discharge generator capable of generating aerosol metal aggregate particles and sintered near spheres. The set-up also contained an exposure chamber, The Nano Aerosol Chamber for In Vitro Toxicity (NACIVT). The system facilitates online characterization capabilities of mass mobility, mass concentration, and number size distribution to determine the exposure. By dilution, the desired exposure level was controlled. Primary and cancerous airway cells were exposed to copper (Cu), palladium (Pd), and silver (Ag) aggregates, 50–150 nm in median diameter. The aggregates were composed of primary particles 2, respectively, were achieved. Viability was measured by WST-1 assay, cytokines (Il-6, Il-8, TNF-a, MCP) by Luminex technology. Statistically significant effects and dose response on cytokine expression were observed for SAEC cells after exposure to Cu, Pd, or Ag particles. Also, a positive dose response was observed for SAEC viability after Cu exposure. For A549 cells, statistically significant effects on viability were observed after exposure to Cu and Pd particles. The set-up produced a stable flow of aerosol particles with an exposure and dose expressed in terms of number, mass, and surface area. Exposure-related effects on the airway cellular models could be asserted. Graphical Abstract: [Figure not available: see fulltext.]
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy