SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Bomans D. J.)) srt2:(2020-2023)"

Sökning: (WFRF:(Bomans D. J.)) > (2020-2023)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Heesen, V, et al. (författare)
  • Nearby galaxies in the LOFAR Two-metre Sky Survey I. Insights into the non-linearity of the radio-SFR relation
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 664
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Cosmic rays and magnetic fields are key ingredients in galaxy evolution, regulating both stellar feedback and star formation. Their properties can be studied with low-frequency radio continuum observations that are free from thermal contamination. Aims. We define a sample of 76 nearby (<30 Mpc) galaxies with rich ancillary data in the radio continuum and infrared from the CHANG-ES and KINGFISH surveys, which will be observed with the LOFAR Two-metre Sky Survey (LoTSS) at 144 MHz. Methods. We present maps for 45 of them as part of the LoTSS data release 2 (LoTSS-DR2), where we measure integrated flux densities and study integrated and spatially resolved radio spectral indices. We investigate the radio-star formation rate (SFR) relation using SFRs derived from total infrared and H alpha + 24-mu m emission. Results. The radio-SFR relation at 144 MHz is clearly super-linear with L-144mHz proportional to SFR1,4-1,5. The mean integrated radio spectral index between 144 and approximate to 1400 MHz is = -0.56 +/- 0.14, in agreement with the injection spectral index for cosmic ray electrons (CRE5). However, the radio spectral index maps show variation of spectral indices with flatter spectra associated with star-forming regions and steeper spectra in galaxy outskirts and, in particular, in extra-planar regions. We found that galaxies with high SFRs have steeper radio spectra; we find similar correlations with galaxy size, mass, and rotation speed. Conclusions. Galaxies that are larger and more massive are better electron calorimeters, meaning that the CRE lose a higher fraction of their energy within the galaxies. This explains the super-linear radio-SFR relation, with more massive, star-forming galaxies being radio bright. We propose a semi-calorimetric radio-SFR relation that employs the galaxy mass as a proxy for the calorimetric efficiency.
  •  
3.
  • Fijneman, Andreas J., et al. (författare)
  • Local quantification of mesoporous silica microspheres using multiscale electron tomography and lattice Boltzmann simulations
  • 2020
  • Ingår i: Microporous and Mesoporous Materials. - : Elsevier BV. - 1387-1811. ; 302
  • Tidskriftsartikel (refereegranskat)abstract
    • The multiscale pore structure of mesoporous silica microspheres plays an important role for tuning mass transfer kinetics in technological applications such as liquid chromatography. While local analysis of a pore network in such materials has been previously achieved, multiscale quantification of microspheres down to the nanometer scale pore level is still lacking. Here we demonstrate for the first time, by combining low convergence angle scanning transmission electron microscopy tomography (LC-STEM tomography) with image analysis and lattice Boltzmann simulations, that the multiscale pore network of commercial mesoporous silica microspheres can be quantified. This includes comparing the local tortuosity and intraparticle diffusion coefficients between different regions within the same microsphere. The results, spanning more than two orders of magnitude between nanostructures and entire object, are in good agreement with bulk characterization techniques such as nitrogen gas physisorption and add valuable local information for tuning mass transfer behavior (in liquid chromatography or catalysis) on the single microsphere level.
  •  
4.
  • Heesen, V., et al. (författare)
  • Detection of magnetic fields in the circumgalactic medium of nearby galaxies using Faraday rotation
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 670
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The existence of magnetic fields in the circumgalactic medium (CGM) is largely unconstrained. Their detection is important as magnetic fields can have a significant impact on the evolution of the CGM, and, in turn, the fields can serve as tracers for dynamical processes in the CGM. Aims. Using the Faraday rotation of polarised background sources, we aim to detect a possible excess of the rotation measure in the surrounding area of nearby galaxies. Methods. We used 2461 residual rotation measures (RRMs) observed with the LOw Frequency ARray (LOFAR), where the foreground contribution from the Milky Way is subtracted. The RRMs were then studied around a subset of 183 nearby galaxies that was selected by apparent B-band magnitude. Results. We find that, in general, the RRMs show no significant excess for small impact parameters (i.e., the perpendicular distance to the line of sight). However, if we only consider galaxies at higher inclination angles and sightlines that pass close to the minor axis of the galaxies, we find significant excess at impact parameters of less than 100 kpc. The excess in |RRM| is 3.7 rad m-2 with an uncertainty between ±0.9 rad m-2 and ±1.3 rad m-2 depending on the statistical properties of the background (2.8σ - 4.1σ). With electron densities of ∼10-4 cm-3, this suggests magnetic field strengths of a few tenths of a microgauss. Conclusions. Our results suggest a slow decrease in the magnetic field strength with distance from the galactic disc, as expected if the CGM is magnetised by galactic winds and outflows.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy