SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Campana P.)) srt2:(2020-2024) srt2:(2022)"

Sökning: (WFRF:(Campana P.)) srt2:(2020-2024) > (2022)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adriani, O., et al. (författare)
  • Design of an Antimatter Large Acceptance Detector In Orbit (ALADInO)
  • 2022
  • Ingår i: Instruments. - : MDPI AG. - 2410-390X. ; 6:2
  • Tidskriftsartikel (refereegranskat)abstract
    • A new generation magnetic spectrometer in space will open the opportunity to inves-tigate the frontiers in direct high-energy cosmic ray measurements and to precisely measure the amount of the rare antimatter component in cosmic rays beyond the reach of current missions. We propose the concept for an Antimatter Large Acceptance Detector In Orbit (ALADInO), designed to take over the legacy of direct measurements of cosmic rays in space performed by PAMELA and AMS-02. ALADInO features technological solutions conceived to overcome the current limi-tations of magnetic spectrometers in space with a layout that provides an acceptance larger than 10 m2 sr. A superconducting magnet coupled to precision tracking and time-of-flight systems can provide the required matter–antimatter separation capabilities and rigidity measurement resolution with a Maximum Detectable Rigidity better than 20 TV. The inner 3D-imaging deep calorimeter, designed to maximize the isotropic acceptance of particles, allows for the measurement of cosmic rays up to PeV energies with accurate energy resolution to precisely measure features in the cosmic ray spectra. The operations of ALADInO in the Sun–Earth L2 Lagrangian point for at least 5 years would enable unique revolutionary observations with groundbreaking discovery poten-tials in the field of astroparticle physics by precision measurements of electrons, positrons, and antiprotons up to 10 TeV and of nuclear cosmic rays up to PeV energies, and by the possible unam-biguous detection and measurement of low-energy antideuteron and antihelium components in cosmic rays. 
  •  
2.
  • Fiore, A., et al. (författare)
  • Close, bright, and boxy : the superluminous SN 2018hti
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 512:3, s. 4484-4502
  • Tidskriftsartikel (refereegranskat)abstract
    • SN 2018hti was a very nearby (z = 0.0614) superluminous supernova with an exceedingly bright absolute magnitude of −21.7 mag in r band at maximum. The densely sampled pre-maximum light curves of SN 2018hti show a slow luminosity evolution and constrain the rise time to ∼50 rest-frame d. We fitted synthetic light curves to the photometry to infer the physical parameters of the explosion of SN 2018hti for both the magnetar and the CSM-interaction scenarios. We conclude that one of two mechanisms could be powering the luminosity of SN 2018hti; interaction with ∼10 M⊙ of circumstellar material or a magnetar with a magnetic field of Bp∼ 1.3 × 1013 G, and initial period of Pspin∼ 1.8 ms. From the nebular spectrum modelling we infer that SN 2018hti likely results from the explosion of a ∼40M⊙∼40M⊙ progenitor star.
  •  
3.
  • Rossi, A., et al. (författare)
  • A blast from the infant Universe : The very high-z GRB210905A
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 665
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a detailed follow-up of the very energetic GRB 210905A at a high redshift of z = 6.312 and its luminous X-ray and optical afterglow. Following the detection by Swift and Konus-Wind, we obtained a photometric and spectroscopic follow-up in the optical and near-infrared (NIR), covering both the prompt and afterglow emission from a few minutes up to 20 Ms after burst. With an isotropic gamma-ray energy release of Eiso = 1.27−0.19+0.20 × 1054 erg, GRB 210905A lies in the top ∼7% of gamma-ray bursts (GRBs) in the Konus-Wind catalogue in terms of energy released. Its afterglow is among the most luminous ever observed, and, in particular, it is one of the most luminous in the optical at t ≳ 0.5 d in the rest frame. The afterglow starts with a shallow evolution that can be explained by energy injection, and it is followed by a steeper decay, while the spectral energy distribution is in agreement with slow cooling in a constant-density environment within the standard fireball theory. A jet break at ∼46.2 ± 16.3 d (6.3 ± 2.2 d rest-frame) has been observed in the X-ray light curve; however, it is hidden in the H band due to a constant contribution from the host galaxy and potentially from a foreground intervening galaxy. In particular, the host galaxy is only the fourth GRB host at z > 6 known to date. By assuming a number density n = 1 cm−3 and an efficiency η = 0.2, we derived a half-opening angle of 8.4 ° ±1.0°, which is the highest ever measured for a z ≳ 6 burst, but within the range covered by closer events. The resulting collimation-corrected gamma-ray energy release of ≃1 × 1052 erg is also among the highest ever measured. The moderately large half-opening angle argues against recent claims of an inverse dependence of the half-opening angle on the redshift. The total jet energy is likely too large to be sustained by a standard magnetar, and it suggests that the central engine of this burst was a newly formed black hole. Despite the outstanding energetics and luminosity of both GRB 210905A and its afterglow, we demonstrate that they are consistent within 2σ with those of less distant bursts, indicating that the powering mechanisms and progenitors do not evolve significantly with redshift.
  •  
4.
  • Mohan, Sooraj, et al. (författare)
  • ANN-PSO aided selection of hydrocarbons as working fluid for low-temperature organic Rankine cycle and thermodynamic evaluation of optimal working fluid
  • 2022
  • Ingår i: Energy. - : Elsevier Ltd. - 0360-5442 .- 1873-6785. ; 259
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic Rankine cycle (ORC) has been demonstrated to extract useful work output from low-grade heat sources like solar-thermal, biomass/biofuel combustion, geothermal, and waste heat. However, working fluid selection for ORC is a complex process and calls for careful optimization. To address this problem, the current work constitutes a design of experiments approach with a full-factorial design. A heat source temperature of 150 °C is selected, and a list of 11 possible candidates of working fluid mixtures (among hydrocarbons) is taken. Work output and efficiencies from each fluid are determined based on the design of experiments, and the results are used to model an artificial neural network (ANN). Equations for work output and first law efficiency are developed using tan sigmoid function and ANN constants which act as objective functions that are maximized using multi-objective particle swarm optimization (PSO). The results of the ANN-PSO model is validated with the values from thermodynamic analysis with less than 2% error. The optimal working fluid obtained for maximum work output is R600a operating at an evaporator pressure of 1.88 MPa without any superheating. The resulting maximum work output is 7.15 kW at 8.05% thermal efficiency and an exergy efficiency of 38.13%.
  •  
5.
  • Puppala, H., et al. (författare)
  • Identification and analysis of barriers for harnessing geothermal energy in India
  • 2022
  • Ingår i: Renewable energy. - : Elsevier Ltd. - 0960-1481 .- 1879-0682. ; 186, s. 327-340
  • Tidskriftsartikel (refereegranskat)abstract
    • The Indian Government envisaged generating 10 GW using geothermal power by 2030. Reaching this milestone is linked with numerous challenges, as geothermal exploitation in India is in the nascent stages. In this work, possible barrier categories and barriers to harness geothermal energy in India are identified with the help of literature review and questionnaire-based surveys. Fuzzy Delphi method is used to find the significant barriers among the listed. Subsequently, Fuzzy Analytical Hierarchy Process (Fuzzy AHP) is used to determine the relative dominance of each barrier category and the barriers within each category. Outcomes of this research show that the resource barrier category obtained highest priority. This category includes various barriers such as (i) conceptualization of geothermal reservoir, (ii) estimation of theoretical heat energy, (iii) determination of extractable power, and (iv) selection of suitable extraction schemes. Results suggest that a comprehensive conceptual model presenting the subsurface variation of thermo-hydro-geological parameters with depth at a geothermal field can support the accurate depiction of the available and extractable thermal potential. Stability of the obtained hierarchy is examined by sensitivity analysis. Findings of this study help to identify the barriers that can be reasonably encountered and to propose developmental activities to harness geothermal energy. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy