SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(WFRF:(Collier D)) srt2:(2020-2024)"

Search: (WFRF:(Collier D)) > (2020-2024)

  • Result 1-10 of 71
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Niemi, MEK, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Kanai, M, et al. (author)
  • 2023
  • swepub:Mat__t
  •  
3.
  • Bravo, L, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
4.
  • Tabiri, S, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
5.
  • Khatri, C, et al. (author)
  • Outcomes after perioperative SARS-CoV-2 infection in patients with proximal femoral fractures: an international cohort study
  • 2021
  • In: BMJ open. - : BMJ. - 2044-6055. ; 11:11, s. e050830-
  • Journal article (peer-reviewed)abstract
    • Studies have demonstrated high rates of mortality in people with proximal femoral fracture and SARS-CoV-2, but there is limited published data on the factors that influence mortality for clinicians to make informed treatment decisions. This study aims to report the 30-day mortality associated with perioperative infection of patients undergoing surgery for proximal femoral fractures and to examine the factors that influence mortality in a multivariate analysis.SettingProspective, international, multicentre, observational cohort study.ParticipantsPatients undergoing any operation for a proximal femoral fracture from 1 February to 30 April 2020 and with perioperative SARS-CoV-2 infection (either 7 days prior or 30-day postoperative).Primary outcome30-day mortality. Multivariate modelling was performed to identify factors associated with 30-day mortality.ResultsThis study reports included 1063 patients from 174 hospitals in 19 countries. Overall 30-day mortality was 29.4% (313/1063). In an adjusted model, 30-day mortality was associated with male gender (OR 2.29, 95% CI 1.68 to 3.13, p<0.001), age >80 years (OR 1.60, 95% CI 1.1 to 2.31, p=0.013), preoperative diagnosis of dementia (OR 1.57, 95% CI 1.15 to 2.16, p=0.005), kidney disease (OR 1.73, 95% CI 1.18 to 2.55, p=0.005) and congestive heart failure (OR 1.62, 95% CI 1.06 to 2.48, p=0.025). Mortality at 30 days was lower in patients with a preoperative diagnosis of SARS-CoV-2 (OR 0.6, 95% CI 0.6 (0.42 to 0.85), p=0.004). There was no difference in mortality in patients with an increase to delay in surgery (p=0.220) or type of anaesthetic given (p=0.787).ConclusionsPatients undergoing surgery for a proximal femoral fracture with a perioperative infection of SARS-CoV-2 have a high rate of mortality. This study would support the need for providing these patients with individualised medical and anaesthetic care, including medical optimisation before theatre. Careful preoperative counselling is needed for those with a proximal femoral fracture and SARS-CoV-2, especially those in the highest risk groups.Trial registration numberNCT04323644
  •  
6.
  • Blokland, G. A. M., et al. (author)
  • Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders
  • 2022
  • In: Biological Psychiatry. - : Elsevier BV. - 0006-3223 .- 1873-2402. ; 91:1, s. 102-117
  • Journal article (peer-reviewed)abstract
    • Background: Sex differences in incidence and/or presentation of schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP) are pervasive. Previous evidence for shared genetic risk and sex differences in brain abnormalities across disorders suggest possible shared sex-dependent genetic risk. Methods: We conducted the largest to date genome-wide genotype-by-sex (G×S) interaction of risk for these disorders using 85,735 cases (33,403 SCZ, 19,924 BIP, and 32,408 MDD) and 109,946 controls from the PGC (Psychiatric Genomics Consortium) and iPSYCH. Results: Across disorders, genome-wide significant single nucleotide polymorphism–by-sex interaction was detected for a locus encompassing NKAIN2 (rs117780815, p = 3.2 × 10−8), which interacts with sodium/potassium-transporting ATPase (adenosine triphosphatase) enzymes, implicating neuronal excitability. Three additional loci showed evidence (p < 1 × 10−6) for cross-disorder G×S interaction (rs7302529, p = 1.6 × 10−7; rs73033497, p = 8.8 × 10−7; rs7914279, p = 6.4 × 10−7), implicating various functions. Gene-based analyses identified G×S interaction across disorders (p = 8.97 × 10−7) with transcriptional inhibitor SLTM. Most significant in SCZ was a MOCOS gene locus (rs11665282, p = 1.5 × 10−7), implicating vascular endothelial cells. Secondary analysis of the PGC-SCZ dataset detected an interaction (rs13265509, p = 1.1 × 10−7) in a locus containing IDO2, a kynurenine pathway enzyme with immunoregulatory functions implicated in SCZ, BIP, and MDD. Pathway enrichment analysis detected significant G×S interaction of genes regulating vascular endothelial growth factor receptor signaling in MDD (false discovery rate-corrected p < .05). Conclusions: In the largest genome-wide G×S analysis of mood and psychotic disorders to date, there was substantial genetic overlap between the sexes. However, significant sex-dependent effects were enriched for genes related to neuronal development and immune and vascular functions across and within SCZ, BIP, and MDD at the variant, gene, and pathway levels. © 2021 Society of Biological Psychiatry
  •  
7.
  •  
8.
  • Benz, W., et al. (author)
  • The CHEOPS mission
  • 2021
  • In: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 51:1, s. 109-151
  • Journal article (peer-reviewed)abstract
    • The CHaracterising ExOPlanet Satellite (CHEOPS) was selected on October 19, 2012, as the first small mission (S-mission) in the ESA Science Programme and successfully launched on December 18, 2019, as a secondary passenger on a Soyuz-Fregat rocket from Kourou, French Guiana. CHEOPS is a partnership between ESA and Switzerland with important contributions by ten additional ESA Member States. CHEOPS is the first mission dedicated to search for transits of exoplanets using ultrahigh precision photometry on bright stars already known to host planets. As a follow-up mission, CHEOPS is mainly dedicated to improving, whenever possible, existing radii measurements or provide first accurate measurements for a subset of those planets for which the mass has already been estimated from ground-based spectroscopic surveys. The expected photometric precision will also allow CHEOPS to go beyond measuring only transits and to follow phase curves or to search for exo-moons, for example. Finally, by unveiling transiting exoplanets with high potential for in-depth characterisation, CHEOPS will also provide prime targets for future instruments suited to the spectroscopic characterisation of exoplanetary atmospheres. To reach its science objectives, requirements on the photometric precision and stability have been derived for stars with magnitudes ranging from 6 to 12 in the V band. In particular, CHEOPS shall be able to detect Earth-size planets transiting G5 dwarf stars (stellar radius of 0.9R⊙) in the magnitude range 6 ≤ V ≤ 9 by achieving a photometric precision of 20 ppm in 6 hours of integration time. In the case of K-type stars (stellar radius of 0.7R⊙) of magnitude in the range 9 ≤ V ≤ 12, CHEOPS shall be able to detect transiting Neptune-size planets achieving a photometric precision of 85 ppm in 3 hours of integration time. This precision has to be maintained over continuous periods of observation for up to 48 hours. This precision and stability will be achieved by using a single, frame-transfer, back-illuminated CCD detector at the focal plane assembly of a 33.5 cm diameter, on-axis Ritchey-Chrétien telescope. The nearly 275 kg spacecraft is nadir-locked, with a pointing accuracy of about 1 arcsec rms, and will allow for at least 1 Gbit/day downlink. The sun-synchronous dusk-dawn orbit at 700 km altitude enables having the Sun permanently on the backside of the spacecraft thus minimising Earth stray light. A mission duration of 3.5 years in orbit is foreseen to enable the execution of the science programme. During this period, 20% of the observing time is available to the wider community through yearly ESA call for proposals, as well as through discretionary time approved by ESA’s Director of Science. At the time of this writing, CHEOPS commissioning has been completed and CHEOPS has been shown to fulfill all its requirements. The mission has now started the execution of its science programme.
  •  
9.
  • Luque, R., et al. (author)
  • A resonant sextuplet of sub-Neptunes transiting the bright star HD 110067
  • 2023
  • In: Nature. - 0028-0836 .- 1476-4687. ; 623:7989, s. 932-937
  • Journal article (peer-reviewed)abstract
    • Planets with radii between that of the Earth and Neptune (hereafter referred to as ‘sub-Neptunes’) are found in close-in orbits around more than half of all Sun-like stars 1,2. However, their composition, formation and evolution remain poorly understood 3. The study of multiplanetary systems offers an opportunity to investigate the outcomes of planet formation and evolution while controlling for initial conditions and environment. Those in resonance (with their orbital periods related by a ratio of small integers) are particularly valuable because they imply a system architecture practically unchanged since its birth. Here we present the observations of six transiting planets around the bright nearby star HD 110067. We find that the planets follow a chain of resonant orbits. A dynamical study of the innermost planet triplet allowed the prediction and later confirmation of the orbits of the rest of the planets in the system. The six planets are found to be sub-Neptunes with radii ranging from 1.94R ⊕ to 2.85R ⊕. Three of the planets have measured masses, yielding low bulk densities that suggest the presence of large hydrogen-dominated atmospheres.
  •  
10.
  • Osborn, H. P., et al. (author)
  • Uncovering the true periods of the young sub-Neptunes orbiting TOI-2076
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 664
  • Journal article (peer-reviewed)abstract
    • Context. TOI-2076 is a transiting three-planet system of sub-Neptunes orbiting a bright (G = 8.9 mag), young (340 +/- 80 Myr) K-type star. Although a validated planetary system, the orbits of the two outer planets were unconstrained as only two non-consecutive transits were seen in TESS photometry. This left 11 and 7 possible period aliases for each. Aims. To reveal the true orbits of these two long-period planets, precise photometry targeted on the highest-probability period aliases is required. Long-term monitoring of transits in multi-planet systems can also help constrain planetary masses through TTV measurements. Methods. We used the MonoTools package to determine which aliases to follow, and then performed space-based and ground-based photometric follow-up of TOI-2076 c and d with CHEOPS, SAINT-EX, and LCO telescopes. Results. CHEOPS observations revealed a clear detection for TOI-2076 c at P = 21.01538(-0.00074)(+0.00084) d, and allowed us to rule out three of the most likely period aliases for TOI-2076 d. Ground-based photometry further enabled us to rule out remaining aliases and confirm the P = 35.12537 +/- 0.00067 d alias. These observations also improved the radius precision of all three sub-Neptunes to 2.518 +/- 0.036, 3.497 +/- 0.043, and 3.232 +/- 0.063 R-circle plus. Our observations also revealed a clear anti-correlated TTV signal between planets b and c likely caused by their proximity to the 2:1 resonance, while planets c and d appear close to a 5:3 period commensurability, although model degeneracy meant we were unable to retrieve robust TTV masses. Their inflated radii, likely due to extended H-He atmospheres, combined with low insolation makes all three planets excellent candidates for future comparative transmission spectroscopy with JWST.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 71

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view