SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Craddock N)) srt2:(2020-2024) srt2:(2020)"

Sökning: (WFRF:(Craddock N)) srt2:(2020-2024) > (2020)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Soda, T., et al. (författare)
  • International Consortium on the Genetics of Electroconvulsive Therapy and Severe Depressive Disorders (Gen-ECT-ic)
  • 2020
  • Ingår i: European Archives of Psychiatry and Clinical Neuroscience. - : Springer Science and Business Media LLC. - 0940-1334 .- 1433-8491. ; 270:7, s. 921-932
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent genome-wide association studies have demonstrated that the genetic burden associated with depression correlates with depression severity. Therefore, conducting genetic studies of patients at the most severe end of the depressive disorder spectrum, those with treatment-resistant depression and who are prescribed electroconvulsive therapy (ECT), could lead to a better understanding of the genetic underpinnings of depression. Despite ECT being one of the most effective forms of treatment for severe depressive disorders, it is usually placed at the end of treatment algorithms of current guidelines. This is perhaps because ECT has controlled risk and logistical demands including use of general anaesthesia and muscle relaxants and side-effects such as short-term memory impairment. Better understanding of the genetics and biology of ECT response and of cognitive side-effects could lead to more personalized treatment decisions. To enhance the understanding of the genomics of severe depression and ECT response, researchers and ECT providers from around the world and from various depression or ECT networks, but not limited to, such as the Psychiatric Genomics Consortium, the Clinical Alliance and Research in ECT, and the National Network of Depression Centers have formed the Genetics of ECT International Consortium (Gen-ECT-ic). Gen-ECT-ic will organize the largest clinical and genetic collection to date to study the genomics of severe depressive disorders and response to ECT, aiming for 30,000 patients worldwide using a GWAS approach. At this stage it will be the largest genomic study on treatment response in depression. Retrospective data abstraction and prospective data collection will be facilitated by a uniform data collection approach that is flexible and will incorporate data from many clinical practices. Gen-ECT-ic invites all ECT providers and researchers to join its efforts.
  •  
4.
  • Haugg, Amelie, et al. (författare)
  • Can we predict real-time fMRI neurofeedback learning success from pretraining brain activity?
  • 2020
  • Ingår i: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 41:14, s. 3839-3854
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic, and psychiatric patient populations. However, many real-time fMRI neurofeedback studies report large inter-individual differences in learning success. The factors that cause this vast variability between participants remain unknown and their identification could enhance treatment success. Thus, here we employed a meta-analytic approach including data from 24 different neurofeedback studies with a total of 401 participants, including 140 patients, to determine whether levels of activity in target brain regions during pretraining functional localizer or no-feedback runs (i.e., self-regulation in the absence of neurofeedback) could predict neurofeedback learning success. We observed a slightly positive correlation between pretraining activity levels during a functional localizer run and neurofeedback learning success, but we were not able to identify common brain-based success predictors across our diverse cohort of studies. Therefore, advances need to be made in finding robust models and measures of general neurofeedback learning, and in increasing the current study database to allow for investigating further factors that might influence neurofeedback learning.
  •  
5.
  • Lewis, Katie J S, et al. (författare)
  • Comparison of Genetic Liability for Sleep Traits Among Individuals With Bipolar Disorder I or II and Control Participants.
  • 2020
  • Ingår i: JAMA psychiatry. - : American Medical Association (AMA). - 2168-6238 .- 2168-622X. ; 77:3, s. 303-310
  • Tidskriftsartikel (refereegranskat)abstract
    • Insomnia, hypersomnia, and an evening chronotype are common in individuals with bipolar disorder (BD), but whether this reflects shared genetic liability is unclear. Stratifying by BD subtypes could elucidate this association and inform sleep and BD research.To assess whether polygenic risk scores (PRSs) for sleep traits are associated with BD subtypes I and II.This case-control study was conducted in the United Kingdom and Sweden with participants with BD and control participants. Multinomial regression was used to assess whether PRSs for insomnia, daytime sleepiness, sleep duration, and chronotype are associated with BD subtypes compared with control participants. Affected individuals were recruited from the Bipolar Disorder Research Network. Control participants were recruited from the 1958 British Birth Cohort and the UK Blood Service. Analyses were repeated in an independent Swedish sample from August 2018 to July 2019. All participants were of European ancestry.Standardized PRSs derived using alleles from genome-wide association studies of insomnia, sleep duration, daytime sleepiness, and chronotype. These were adjusted for the first 10 population principal components, genotyping platforms, and sex.Association of PRSs with BD subtypes, determined by semistructured psychiatric interview and case notes.The main analysis included 4672 participants with BD (3132 female participants [67.0%]; 3404 with BD-I [72.9%]) and 5714 control participants (2812 female participants [49.2%]). Insomnia PRS was associated with increased risk of BD-II (relative risk [RR], 1.14 [95% CI, 1.07-1.21]; P=8.26×10-5) but not BD-I (RR, 0.98 [95% CI, 0.94-1.03]; P=.409) relative to control participants. Sleep-duration PRS was associated with BD-I (RR, 1.10 [95% CI, 1.06-1.15]; P=1.13×10-5) but not BD-II (RR, 0.99 [95% CI, 0.93-1.06]; P=.818). Associations between (1) insomnia PRS and BD-II and (2) sleep-duration PRS and BD-I were replicated in the Swedish sample of 4366 individuals with BD (2697 female participants [61.8%]; 2627 with BD-I [60.2%]) and 6091 control participants (3767 female participants [61.8%]). Chronotype and daytime-sleepiness PRS were not associated with BD subtypes.Per this analysis, BD subtypes differ in genetic liability to insomnia and hypersomnia, providing further evidence that the distinction between BD-I and BD-II has genetic validity. This distinction will be crucial in selecting participants for future research on the role of sleep disturbance in BD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy