SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Cresswell A G)) srt2:(2000-2004)"

Sökning: (WFRF:(Cresswell A G)) > (2000-2004)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pinniger, G J, et al. (författare)
  • Tension regulation during lengthening and shortening actions of the human soleus muscle.
  • 2000
  • Ingår i: European Journal of Applied Physiology. - : Springer Science and Business Media LLC. - 1439-6319 .- 1439-6327 .- 0301-5548. ; 81:5, s. 375-83
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present study we investigated tension regulation in the human soleus (SOL) muscle during controlled lengthening and shortening actions. Eleven subjects performed plantar flexor efforts on an ankle torque motor through 30 degrees of ankle displacement (75 degrees -105 degrees internal ankle angle) at lengthening and shortening velocities of 5, 15 and 30 degrees. S(-1). To isolate the SOL from the remainder of the triceps surae, the subject's knee was flexed to 60 degrees during all trials. Voluntary plantar flexor efforts were performed under two test conditions: (1) maximal voluntary activation (MVA) of the SOL, and (2) constant submaximal voluntary activation (SVA) of the SOL. SVA trials were performed with direct visual feedback of the SOL electromyogram (EMG) at a level resulting in a torque output of 30% of isometric maximum. Angle-specific (90 degrees ankle angle) torque and EMG of the SOL, medial gastrocnemius (MG) and tibialis anterior (TA) were recorded. In seven subjects from the initial group, the test protocol was repeated under submaximal percutaneous electrical activation (SEA) of SOL (to 30% isometric maximal effort). Lengthening torques were significantly greater than shortening torques in all test conditions. Lengthening torques in MVA and SVA were independent of velocity and remained at the isometric level, whereas SEA torques were greater than isometric torques and increased at higher lengthening velocities. Shortening torques were lower than the isometric level for all conditions. However, whereas SVA and SEA torques decreased at higher velocities of shortening, MVA torques were independent of velocity. These results indicate velocity- and activation-type-specific tension regulation in the human SOL muscle.
  •  
2.
  • Hodges, P W, et al. (författare)
  • In vivo measurement of the effect of intra-abdominal pressure on the human spine.
  • 2001
  • Ingår i: Journal of Biomechanics. - 0021-9290 .- 1873-2380. ; 34:3, s. 347-53
  • Tidskriftsartikel (refereegranskat)abstract
    • In humans, intra-abdominal pressure (IAP) is elevated during many everyday activities. This experiment aimed to investigate the extent to which increased IAP--without concurrent activity of the abdominal or back extensor muscles--produces an extensor torque. With subjects positioned in side lying on a swivel table with its axis at L3, moments about this vertebral level were measured when IAP was transiently increased by electrical stimulation of the diaphragm via the phrenic nerve. There was no electromyographic activity in abdominal and back extensor muscles. When IAP was increased artificially to approximately 15% of the maximum IAP amplitude that could be generated voluntarily with the trunk positioned in flexion, a trunk extensor moment (approximately 6 Nm) was recorded. The size of the effect was proportional to the increase in pressure. The extensor moment was consistent with that predicted from a model based on measurements of abdominal cross-sectional area and IAP moment arm. When IAP was momentarily increased while the trunk was flexed passively at a constant velocity, the external torque required to maintain the velocity was increased. These results provide the first in vivo data of the amplitude of extensor moment that is produced by increased IAP. Although the net effect of this extensor torque in functional tasks would be dependent on the muscles used to increase the IAP and their associated flexion torque, the data do provide evidence that IAP contributes, at least in part, to spinal stability.
  •  
3.
  • Hodges, P W, et al. (författare)
  • Perturbed upper limb movements cause short-latency postural responses in trunk muscles.
  • 2001
  • Ingår i: Experimental Brain Research. - : Springer Science and Business Media LLC. - 0014-4819 .- 1432-1106. ; 138:2, s. 243-50
  • Tidskriftsartikel (refereegranskat)abstract
    • Addition of a load to a moving upper limb produces a perturbation of the trunk due to transmission of mechanical forces. This experiment investigated the postural response of the trunk muscles in relation to unexpected limb loading. Subjects performed rapid, bilateral shoulder flexion in response to a stimulus. In one third of trials, an unexpected load was added bilaterally to the upper limbs in the first third of the movement. Trunk muscle electromyography, intra-abdominal pressure and upper limb and trunk motion were measured. A short-latency response of the erector spinae and transversus abdominis muscles occurred approximately 50 ms after the onset of the limb perturbation that resulted from addition of the load early in the movement and was coincident with the onset of the observed perturbation at the trunk. The results provide evidence of initiation of a complex postural response of the trunk muscles that is consistent with mediation by afferent input from a site distant to the lumbar spine, which may include afferents of the upper limb.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy