SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Douglas A.)) srt2:(1990-1999)"

Sökning: (WFRF:(Douglas A.)) > (1990-1999)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Brink, Anna, 1971, et al. (författare)
  • Institutionerna och samhällsekonomin
  • 1999
  • Ingår i: Demokratiutredningen (SOU 1999:83), Globalisering, Forskarvolym IX. ; , s. 63-103
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)
  •  
7.
  • Cheng, Chee-Wai, et al. (författare)
  • Dosimetric comparison of treatment planning systems in irradiation of breast with tangential fields
  • 1997
  • Ingår i: International Journal of Radiation Oncology, Biology, Physics. - 0360-3016. ; 38:4, s. 835-842
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: The objectives of this study are: (1) to investigate the dosimetric differences of the different treatment planning systems (TPS) in breast irradiation with tangential fields, and (2) to study the effect of beam characteristics on dose distributions in tangential breast irradiation with 6 MV linear accelerators from different manufacturers. METHODS AND MATERIALS: Nine commercial and two university-based TPS are evaluated in this study. The computed tomographic scan of three representative patients, labeled as "small", "medium" and "large" based on their respective chest wall separations in the central axis plane (CAX) were used. For each patient, the tangential fields were set up in each TPS. The CAX distribution was optimized separately with lung correction, for each TPS based on the same set of optimization conditions. The isodose distributions in two other off-axis planes, one 6 cm cephalic and the other 6 cm caudal to the CAX plane were also computed. To investigate the effect of beam characteristics on dose distributions, a three-dimensional TPS was used to calculate the isodose distributions for three different linear accelerators, the Varian Clinac 6/100, the Siemens MD2 and the Philips SL/7 for the three patients. In addition, dose distributions obtained with 6 MV X-rays from two different accelerators, the Varian Clinac 6/100 and the Varian 2100C, were compared. RESULTS: For all TPS, the dose distributions in all three planes agreed qualitatively to within +/- 5% for the "small" and the "medium" patients. For the "large" patient, all TPS agreed to within +/- 4% on the CAX plane. The isodose distributions in the caudal plane differed by +/- 5% among all TPS. In the cephalic plane in which the patient separation is much larger than that in the CAX plane, six TPS correctly calculated the dose distribution showing a cold spot in the center of the breast contour. The other five TPS showed that the center of the breast received adequate dose. Isodose distributions for 6 MV X-rays from three different accelerators differed by about +/- 3% for the "small" patient and more than +/- 5% for the "large" patient. For two different 6 MV machines of the same manufacturer, the isodose distribution agreed to within +/- 2% for all three planes for the "large" patient. CONCLUSION: The differences observed among the various TPS in this study were within +/- 5% for both the "small" and the "medium" patients while doses at the hot spot exhibit a larger variation. The large discrepancy observed in the off-axis plane for the "large" patient is largely due to the inability of most TPS to incorporate the collimator angles in the dose calculation. Only six systems involved agreed to within +/- 5% for all three patients in all calculation planes. The difference in dose distributions obtained with three accelerators from different manufacturers is probably due to the difference in beam profiles. On the other hand, the 6 MV X-rays from two different models of linear accelerators from the same manufacturer have similar beam characteristics and the dose distributions are within +/- 2% of each other throughout the breast volume. In general, multi-institutional breast treatment data can be compared within a +/- 5% accuracy.
  •  
8.
  • Høiriis Nielsen, J, et al. (författare)
  • Beta cell proliferation and growth factors
  • 1999
  • Ingår i: J Mol Med. - : Springer Science and Business Media LLC. ; 77:1, s. 62-66
  • Tidskriftsartikel (refereegranskat)
  •  
9.
  • Yuskiewicz, Brett A., et al. (författare)
  • Changes in submicrometer particle distributions and light scattering during haze and fog events in a highly polluted environment
  • 1998
  • Ingår i: Contributions to Atmospheric Physics. - 0005-8173. ; 71:1, s. 33-45
  • Tidskriftsartikel (refereegranskat)abstract
    • The changes in submicrometer atmospheric particle size distributions measured with a Differential Mobility Particle Sizer (DMPS) system during a polluted fog experiment during November, 1994 are presented in this study. Results reveal three modes commonly evident in the size distribution (3 < DN < 843 nm) measurements; the ultrafine, Aitken and accumulation with respective geometric diameters, (Dgn), of 17, 110 and 400 nm. An additional mode, appears between the ultrafine and Aitken modes (Dgn = 52 nm) in approximately one quarter of the measurements and is linked to several industrial cities upwind of the measurement site. A stabile ultrafine mode appears consistently (84% of measurements) at 16-17 nm throughout the campaign, suggestive of a source, such as a highway in the near vicinity. During fog and haze periods number concentrations for particles less than 25 nm and greater than 400 nm decrease by 78 and 95%, respectively. These changes do not affect the aerosol scattering efficiency significantly. The overall aerosol mass scattering efficiency determined for the Po Valley region is 4.3 ± 0.6 m2 g-1. Closure is achieved for light extinction predicted from droplet distributions and measured with a transmissiometer in 37 of 39 cases during fog periods. Measured and calculated light extinction, bext, covary strongly with an R2 of 0.92.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy