SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Ekman Annica)) srt2:(2005-2009)"

Sökning: (WFRF:(Ekman Annica)) > (2005-2009)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Bender, Frida A-M, 1978- (författare)
  • Earth's albedo in a changing climate
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The albedo is a key parameter in the radiative budget of the Earth and a primary determinant of the planetary temperature and is therefore also central to questions regarding climate stability, climate change and climate sensitivity. Climate models and satellite observations are essential for studying the albedo, and the parameters determining it, on large spatial and temporal scales. Although climate models are able to capture the large-scale characteristics of the albedo, a bias is found between modelled and observed global albedo estimates, and on a regional scale particular problematic regions can be identified. Cloud parameters, that are of great importance for determining the albedo, vary widely among models, but lack of observations makes constraining models, and even evaluating models, difficult. The freedom of variability for cloud parameters can be used to make models agree with observations of the better constrained radiative budget. It is shown that tuning a model to different radiative budget estimates by altering cloud parameters can influence the climate sensitivity of the model, but the effect seen is small, compared to the range of climate sensitivities estimated by different models. Despite their different parameterizations of clouds, aerosols etc., models do have fundamental features in common, which can further the understanding of the real climate system. For instance it is found that sensitivity to volcanic forcing is related to climate sensitivity in an ensemble of models. If this relation is valid for the real climate as well, observations of the volcanic sensitivity can help restrict the climate sensitivity. The range of climate sensitivity estimates in models can largely be attributed to variations in cloud response to forcing. It is found that in models with high climate sensitivity changes in cloud cover and cloud reflectivity enhance a positive radiative forcing due to increased CO2 concentrations, feeding back on the warming and in models with low climate sensitivity, cloud response counteracts the positive radiative forcing and warming induced by the same forcing. As a consequence the total albedo response to increased CO2 forcing is found to be stronger (more negative) in high sensitivity models and vice versa. Cloud albedo and its variation between different cloud regimes, is important in this regard, yet not well known. A method based on the relation between cloud fraction and albedo is presented, giving a way to estimate regional cloud albedo, primarily for homogeneous cloud regimes, but possibly also extended to a global scale.  
  •  
3.
  • Ekman, Annica, et al. (författare)
  • Do organics contribute to new particle formation in the Amazonian upper troposphere?
  • 2008
  • Ingår i: Geophysical Research Letters. ; 35:L17810, s. 5-
  • Tidskriftsartikel (refereegranskat)abstract
    • 3-D cloud-resolving model simulations including explicit aerosol physics and chemistry are compared with observations of upper tropospheric (12 km) aerosol size distributions over the Amazon Basin. The model underestimates the aerosol number concentration for all modes, especially the nucleation mode (d< 18nm). We show that a boundary layer SO2 mixing ratio of approximately 5 ppb would be needed in order to reproduce the high nucleation mode number concentrations observed. This high SO2 mixing ratio is very unlikely for the pristine Amazon Basin at this time of the year. Hence, it is suggested that vapours other than H2SO4 participate in the formation and growth of small aerosols. Using activation nucleation theory together with a small (0.4-10%) secondary organic aerosol mass yield, we show that isoprene has the potential of substantially increasing the number of small particles formed as well as reducing the underestimate for the larger aerosol modes.
  •  
4.
  •  
5.
  • Engström, Anders, et al. (författare)
  • Observational and modelling evidence of tropical deep convective clouds as a source of mid-tropospheric accumulation mode aerosols
  • 2008
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 35, s. L23813-
  • Tidskriftsartikel (refereegranskat)abstract
    • High concentrations (up to 550 cm−3 STP) of aerosols in the accumulation mode (>0.12 μm) were observed by aircraft above 7.5 km altitude in the dynamically active regions of several deep convective clouds during the INDOEX campaign. Using a coupled 3-D aerosol-cloud-resolving model, we find that significant evaporation of hydrometeors due to strong updrafts and exchange with ambient air occurs at the boundaries and within the cloud tower. Assuming that each evaporated hydrometeor release an aerosol, an increase in the aerosol concentration by up to 600 cm−3 STP is found in the model at altitudes between 6 and 10 km. The evaporation and release of aerosols occur as the cloud develops, suggesting that deep convective clouds are important sources of mid-tropospheric aerosols during their active lifetime. This source may significantly impact the vertical distribution as well as long-range transport of aerosols in the free troposphere.
  •  
6.
  • Kim, Dongchul, et al. (författare)
  • Distribution and direct radiative forcing of carbonaceous and sulfate aerosols in an interactive size-resolving aerosol–climate model
  • 2008
  • Ingår i: Journal of geophysical research: Atmospheres. ; 113:D16, s. D16309-
  • Tidskriftsartikel (refereegranskat)abstract
    • A multimode, two-moment aerosol model has been incorporated in the NCAR CAM3 to develop an interactive aerosol–climate model and to study the impact of anthropogenic aerosols on the global climate system. Currently, seven aerosol modes, namely three for external sulfate and one each for external black carbon (BC), external organic carbon (OC), sulfate/BC mixture (MBS; with BC core coated by sulfate shell), and sulfate/OC mixture (MOS; a uniform mixture of OC and sulfate) are included in the model. Both mass and number concentrations of each aerosol mode, as well as the mass of carbonaceous species in the mixed modes, are predicted by the model so that the chemical, physical, and radiative processes of various aerosols can be formulated depending on aerosol's size, chemical composition, and mixing state. Comparisons of modeled surface and vertical aerosol concentrations, as well as the optical depth of aerosols with available observations and previous model estimates, are in general agreement. However, some discrepancies do exist, likely caused by the coarse model resolution or the constant rates of anthropogenic emissions used to test the model. Comparing to the widely used mass-only method with prescribed geometric size of particles (one-moment scheme), the use of prognostic size distributions of aerosols based on a two-moment scheme in our model leads to a significant reduction in optical depth and thus the radiative forcing at the top of the atmosphere (TOA) of particularly external sulfate aerosols. The inclusion of two types of mixed aerosols alters the mass partitioning of carbonaceous and sulfate aerosol constituents: about 35.5%, 48.5%, and 32.2% of BC, OC, and sulfate mass, respectively, are found in the mixed aerosols. This also brings in competing effects in aerosol radiative forcing including a reduction in atmospheric abundance of BC and OC due to the shorter lifetime of internal mixtures (cooling), a mass loss of external sulfate to mixtures (warming), and an enhancement in atmospheric heating per BC mass due to the stronger absorption extinction of the MBS than external BC (warming). The combined result of including a prognostic size distribution and the mixed aerosols in the model is a much smaller total negative TOA forcing (−0.12 W m−2) of all carbonaceous and sulfate aerosol compounds compared to the cases using one-moment scheme either excluding or including internal mixtures (−0.42 and −0.71 W m−2, respectively). In addition, the global mean all-sky TOA direct forcing of aerosols is significantly more positive than the clear-sky value due to the existence of low clouds beneath the absorbing (external BC and MBS) aerosol layer, particularly over a dark surface. An emission reduction of about 44% for BC and 38% of primary OC is found to effectively change the TOA radiative forcing of the entire aerosol family by −0.14 W m−2 for clear-sky and −0.29 W m−2 for all-sky.
  •  
7.
  • Wang, Chien, et al. (författare)
  • Impact of anthropogenic aerosols on Indian summer monsoon
  • 2009
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 36, s. L21704-
  • Tidskriftsartikel (refereegranskat)abstract
    • Using an interactive aerosol-climate model we find that absorbing anthropogenic aerosols, whether coexisting with scattering aerosols or not, can significantly affect the Indian summer monsoon system. We also show that the influence is reflected in a perturbation to the moist static energy in the sub-cloud layer, initiated as a heating by absorbing aerosols to the planetary boundary layer. The perturbation appears mostly over land, extending from just north of the Arabian Sea to northern India along the southern slope of the Tibetan Plateau. As a result, during the summer monsoon season, modeled convective precipitation experiences a clear northward shift, coincidently in general agreement with observed monsoon precipitation changes in recent decades particularly during the onset season. We demonstrate that the sub-cloud layer moist static energy is a useful quantity for determining the impact of aerosols on the northward extent and to a certain degree the strength of monsoon convection. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy