SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Ekman Annica)) srt2:(2010-2014) srt2:(2012)"

Sökning: (WFRF:(Ekman Annica)) srt2:(2010-2014) > (2012)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ekman, Annica M. L., et al. (författare)
  • Sub-micrometer aerosol particles in the upper troposphere/lowermost stratosphere as measured by CARIBIC and modeled using the MIT-CAM3 global climate model
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117, s. D11202-
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we compare modeled (MIT-CAM3) and observed (CARIBIC) sub-micrometer nucleation (N4-12, 4 <= d <= 12 nm) and Aitken mode (N-12, d > 12 nm) particle number concentrations in the upper troposphere and lowermost stratosphere (UT/LMS). Modeled and observed global median N4-12 and N-12 agree fairly well (within a factor of two) indicating that the relatively simplified binary H2SO4-H2O nucleation parameterization applied in the model produces reasonable results in the UT/LMS. However, a comparison of the spatiotemporal distribution of sub-micrometer particles displays a number of discrepancies between MIT-CAM3 and CARIBIC data: N4-12 is underestimated by the model in the tropics and overestimated in the extra-topics. N-12 is in general overestimated by the model, in particular in the tropics and during summer months. The modeled seasonal variability of N4-12 is in poor agreement with CARIBIC data whereas it agrees rather well for N-12. Modeled particle frequency distributions are in general narrower than the observed ones. The model biases indicate an insufficient diffusive mixing in MIT-CAM3 and a too large vertical transport of carbonaceous aerosols. The overestimated transport is most likely caused by the constant supersaturation threshold applied in the model for the activation of particles into cloud droplets. The annually constant SO2 emissions in the model may also partly explain the poor representation of the N4-12 seasonal cycle. Comparing the MIT-CAM3 with CARIBIC data, it is also clear that care has to be taken regarding the representativeness of the measurement data and the time frequency of the model output.
  •  
2.
  • Liu, X., et al. (författare)
  • Toward a minimal representation of aerosols in climate models : description and evaluation in the Community Atmosphere Model CAM5
  • 2012
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 5:3, s. 709-739
  • Tidskriftsartikel (refereegranskat)abstract
    • A modal aerosol module (MAM) has been developed for the Community Atmosphere Model version 5 (CAM5), the atmospheric component of the Community Earth System Model version 1 (CESM1). MAM is capable of simulating the aerosol size distribution and both internal and external mixing between aerosol components, treating numerous complicated aerosol processes and aerosol physical, chemical and optical properties in a physically-based manner. Two MAM versions were developed: a more complete version with seven lognormal modes (MAM7), and a version with three lognormal modes (MAM3) for the purpose of long-term (decades to centuries) simulations. In this paper a description and evaluation of the aerosol module and its two representations are provided. Sensitivity of the aerosol lifecycle to simplifications in the representation of aerosol is discussed. Simulated sulfate and secondary organic aerosol (SOA) mass concentrations are remarkably similar between MAM3 and MAM7. Differences in primary organic matter (POM) and black carbon (BC) concentrations between MAM3 and MAM7 are also small (mostly within 10 %). The mineral dust global burden differs by 10 % and sea salt burden by 30-40 % between MAM3 and MAM7, mainly due to the different size ranges for dust and sea salt modes and different standard deviations of the log-normal size distribution for sea salt modes between MAM3 and MAM7. The model is able to qualitatively capture the observed geographical and temporal variations of aerosol mass and number concentrations, size distributions, and aerosol optical properties. However, there are noticeable biases; e.g., simulated BC concentrations are significantly lower than measurements in the Arctic. There is a low bias in modeled aerosol optical depth on the global scale, especially in the developing countries. These biases in aerosol simulations clearly indicate the need for improvements of aerosol processes (e.g., emission fluxes of anthropogenic aerosols and precursor gases in developing countries, boundary layer nucleation) and properties (e.g., primary aerosol emission size, POM hygroscopicity). In addition, the critical role of cloud properties (e. g., liquid water content, cloud fraction) responsible for the wet scavenging of aerosol is highlighted.
  •  
3.
  • Partridge, Daniel G., 1984-, et al. (författare)
  • Inverse modeling of cloud-aerosol interactions : Part 2: Sensitivity tests on liquid phase clouds using a Markov Chain Monte carlo based simulation approach
  • 2012
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 12:6, s. 2823-2847
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents a novel approach to investigate cloud-aerosol interactions by coupling a Markov Chain Monte Carlo (MCMC) algorithm to a pseudo-adiabatic cloud parcel model. Despite the number of numerical cloud-aerosol sensitivity studies previously conducted few have used statistical analysis tools to investigate the sensitivity of a cloud model to input aerosol physiochemical parameters. Using synthetic data as observed values of cloud droplet number concentration (CDNC) distribution, this inverse modelling framework is shown to successfully converge to the correct calibration parameters. The employed analysis method provides a new, integrative framework to evaluate the sensitivity of the derived CDNC distribution to the input parameters describing the lognormal properties of the accumulation mode and the particle chemistry. To a large extent, results from prior studies are confirmed, but the present study also provides some additional insightful findings. There is a clear transition from very clean marine Arctic conditions where the aerosol parameters representing the mean radius and geometric standard deviation of the accumulation mode are found to be most important for determining the CDNC distribution to very polluted continental environments (aerosol concentration in the accumulation mode >1000 cm−3) where particle chemistry is more important than both number concentration and size of the accumulation mode. The competition and compensation between the cloud model input parameters illustrate that if the soluble mass fraction is reduced, both the number of particles and geometric standard deviation must increase and the mean radius of the accumulation mode must increase in order to achieve the same CDNC distribution. For more polluted aerosol conditions, with a reduction in soluble mass fraction the parameter correlation becomes weaker and more non-linear over the range of possible solutions (indicative of the sensitivity). This indicates that for the cloud parcel model used herein, the relative importance of the soluble mass fraction appears to decrease if the number or geometric standard deviation of the accumulation mode is increased. This study demonstrates that inverse modelling provides a flexible, transparent and integrative method for efficiently exploring cloud-aerosol interactions efficiently with respect to parameter sensitivity and correlation.
  •  
4.
  • Zábori, Julia, et al. (författare)
  • Wintertime Arctic Ocean sea water properties and primary marine aerosol concentrations
  • 2012
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 12:21, s. 10405-10421
  • Tidskriftsartikel (refereegranskat)abstract
    • Sea spray aerosols are an important part of the climate system through their direct and indirect effects. Due to the diminishing sea ice, the Arctic Ocean is one of the most rapidly changing sea spray aerosol source areas. However, the influence of these changes on primary particle production is not known. In laboratory experiments we examined the influence of Arctic Ocean water temperature, salinity, and oxygen saturation on primary particle concentration characteristics. Sea water temperature was identified as the most important of these parameters. A strong decrease in sea spray aerosol production with increasing water temperature was observed for water temperatures between -1 degrees C and 9 degrees C. Aerosol number concentrations decreased from at least 1400 cm(-3) to 350 cm-3. In general, the aerosol number size distribution exhibited a robust shape with one mode close to dry diameter D-p 0.2 mu m with approximately 45% of particles at smaller sizes. Changes in sea water temperature did not result in pronounced change of the shape of the aerosol size distribution, only in the magnitude of the concentrations. Our experiments indicate that changes in aerosol emissions are most likely linked to changes of the physical properties of sea water at low temperatures. The observed strong dependence of sea spray aerosol concentrations on sea water temperature, with a large fraction of the emitted particles in the typical cloud condensation nuclei size range, provide strong arguments for a more careful consideration of this effect in climate models.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy