SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Fadlallah H)) srt2:(2022)"

Sökning: (WFRF:(Fadlallah H)) > (2022)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bafekry, A., et al. (författare)
  • Theoretical prediction of two-dimensional BC2X (X = N, P, As) monolayers: ab initio investigations
  • 2022
  • Ingår i: Scientific Reports. - : NATURE PORTFOLIO. - 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, novel two-dimensional BC2X (X = N, P, As) monolayers with X atoms out of the B-C plane, are predicted by means of the density functional theory. The structural, electronic, optical, photocatalytic and thermoelectric properties of the BC2X monolayers have been investigated. Stability evaluation of the BC2X single-layers is carried out by phonon dispersion, ab-initio molecular dynamics (AIMD) simulation, elastic stability, and cohesive energies study. The mechanical properties reveal all monolayers considered are stable and have brittle nature. The band structure calculations using the HSE06 functional reveal that the BC2N, BC2P and BC2As are semiconducting monolayers with indirect bandgaps of 2.68 eV, 1.77 eV and 1.21 eV, respectively. The absorption spectra demonstrate large absorption coefficients of the BC2X monolayers in the ultraviolet range of electromagnetic spectrum. Furthermore, we disclose the BC2N and BC2P monolayers are potentially good candidates for photocatalytic water splitting. The electrical conductivity of BC2X is very small and slightly increases by raising the temperature. Electron doping may yield greater electric productivity of the studied monolayers than hole doping, as indicated by the larger power factor in the n-doped region compared to the p-type region. These results suggest that BC2X (X = N, P, As) monolayers represent a new promising class of 2DMs for electronic, optical and energy conversion systems.
  •  
2.
  • Bafekry, A., et al. (författare)
  • Ab-initio-driven prediction of puckered penta-like PdPSeX (X=O, S, Te) Janus monolayers : Study on the electronic, optical, mechanical and photocatalytic properties
  • 2022
  • Ingår i: Applied Surface Science. - : Elsevier. - 0169-4332 .- 1873-5584. ; 582
  • Tidskriftsartikel (refereegranskat)abstract
    • A systematic investigation of the structural, mechanical, electronic, and optical properties of puckered penta-like PdPSeX (X=O, S and Te) Janus monolayers has been performed by means of the plane wave density functional theory. It is confirmed that the pentagonal PdPSeX monolayers are dynamically and mechanical stable by means of analysis of their phonon dispersion curves and the Born condition under harmonic approximation, respectively. The PdPSeX Janus monolayers are disclosed as brittle two-dimensional materials (2DMs). The PBE (HSE06)-based calculations exhibit they are indirect semiconductors with bandgap values of 0.65 (1.44) eV, 1.20 (2.02) eV, and 0.98 (1.70) eV for PbPSeO, PbPSeS, and PbPSeTe monolayer, sequentially. The computational results demonstrate the PdPSeTe monolayer as the best suited candidate for visible light absorption and photocatalytic water splitting within the considered pentagonal PdPSeX monolayers. Our ab-initio-based outcomes provide an insight into the fundamental properties of the penta-like PdPSeX Janus structures and surely would motivate further experimental and theoretical studies to reveal the full application potential of this new type of 2DMs.
  •  
3.
  • Bafekry, A., et al. (författare)
  • Biphenylene monolayer as a two-dimensional nonbenzenoid carbon allotrope: a first-principles study
  • 2022
  • Ingår i: Journal of Physics. - : IOP Publishing Ltd. - 0953-8984 .- 1361-648X. ; 34:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In a very recent accomplishment, the two-dimensional form of biphenylene network (BPN) has been fabricated. Motivated by this exciting experimental result on 2D layered BPN structure, herein we perform detailed density-functional theory-based first-principles calculations, in order to gain insight into the structural, mechanical, electronic and optical properties of this promising nanomaterial. Our theoretical results reveal the BPN structure is constructed from three rings of tetragon, hexagon and octagon, meanwhile the electron localization function shows very strong bonds between the C atoms in the structure. The dynamical stability of BPN is verified via the phonon band dispersion calculations. The mechanical properties reveal the brittle behavior of BPN monolayer. The Youngs modulus has been computed as 0.1 TPa, which is smaller than the corresponding value of graphene, while the Poissons ratio determined to be 0.26 is larger than that of graphene. The band structure is evaluated to show the electronic features of the material; determining the BPN monolayer as metallic with a band gap of zero. The optical properties (real and imaginary parts of the dielectric function, and the absorption spectrum) uncover BPN as an insulator along the zz direction, while owning metallic properties in xx and yy directions. We anticipate that our discoveries will pave the way to the successful implementation of this 2D allotrope of carbon in advanced nanoelectronics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy