SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Fjeldsa Jon)) srt2:(2020)"

Sökning: (WFRF:(Fjeldsa Jon)) > (2020)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Feng, Shaohong, et al. (författare)
  • Dense sampling of bird diversity increases power of comparative genomics
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 587:7833
  • Tidskriftsartikel (refereegranskat)abstract
    • Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity(1-4). Sparse taxon sampling has previously been proposed to confound phylogenetic inference(5), and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species. A dataset of the genomes of 363 species from the Bird 10,000 Genomes Project shows increased power to detect shared and lineage-specific variation, demonstrating the importance of phylogenetically diverse taxon sampling in whole-genome sequencing.
  •  
2.
  • Song, Gang, et al. (författare)
  • Great journey of Great Tits (Parus major group) : Origin, diversification and historical demographics of a broadly distributed bird lineage
  • 2020
  • Ingår i: Journal of Biogeography. - : WILEY. - 0305-0270 .- 1365-2699. ; 47:7, s. 1585-1598
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim The Pleistocene glacial cycles play a prominent role in shaping phylogeographical patterns of organisms, while few studies have focused on the regional difference of glacial effects. By acquiring comprehensive knowledge of the origin, diversification and historical demography of an intensively studied passerine species complex, Great Tit, we aim to test the regional variation of the Late Pleistocene glaciation impacts on this widely distributed bird lineage. Location Eurasia and associated peninsulas and archipelagos. Taxa Parus major species complex. Methods Phylogeny, divergence times and demographic dynamics were estimated with Bayesian methods. Population structure, genetic diversity and correlation between genetic and physical distances were estimated based on mtDNA variation. Glacial-to-present distributional changes were assessed via ecological niche modelling (ENM). Results Five major clades (Central Asia, Eastern Asia, Eastern Himalaya, Northern and Western Eurasia and Southern Asia) were detected, with divergence times ranging 1.57-0.50 million years ago. Genetic diversity values and Bayesian skyline plots suggest that the three eastern clades had a deeper population history. A more complex geographic structure was observed in East Asia. Demographic expansion during the last glacial cycle was indicated for all five clades. ENM results showed broad conservatism of traits related to climate tolerances, and generally broader and more continuous distributional patterns under glacial conditions. Main Conclusions The Great Tit complex probably originated in Southeast Asia. Geographic barriers, such as the deserts of Central Asia and the Qinghai-Tibet Plateau appear to be related to the lineage divergence. Late Pleistocene climate cycles influenced both demographic dynamics and divergence, especially in terms of east-west differences in relation to geographic complexity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy