SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Fryknäs Mårten)) srt2:(2020-2024) srt2:(2023)"

Sökning: (WFRF:(Fryknäs Mårten)) srt2:(2020-2024) > (2023)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Claes, et al. (författare)
  • Assessment in vitro of interactions between anti-cancer drugs and noncancer drugs commonly used by cancer patients
  • 2023
  • Ingår i: Anti-Cancer Drugs. - : Lippincott Williams & Wilkins. - 0959-4973 .- 1473-5741. ; 34:1, s. 92-102
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer patients often suffer from cancer symptoms, treatment complications and concomitant diseases and are, therefore, often treated with several drugs in addition to anticancer drugs. Whether such drugs, here denoted as 'concomitant drugs', have anticancer effects or interact at the tumor cell level with the anticancer drugs is not very well known. The cytotoxic effects of nine concomitant drugs and their interactions with five anti-cancer drugs commonly used for the treatment of colorectal cancer were screened over broad ranges of drug concentrations in vitro in the human colon cancer cell line HCT116wt. Seven additional tyrosine kinase inhibitors were included to further evaluate key findings as were primary cultures of tumor cells from patients with colorectal cancer. Cytotoxic effects were evaluated using the fluorometric microculture cytotoxicity assay (FMCA) and interaction analysis was based on Bliss independent interaction analysis. Simvastatin and loperamide, included here as an opioid agonists, were found to have cytotoxic effects on their own at reasonably low concentrations whereas betamethasone, enalapril, ibuprofen, metformin, metoclopramide, metoprolol and paracetamol were inactive also at very high concentrations. Drug interactions ranged from antagonistic to synergistic over the concentrations tested with a more homogenous pattern of synergy between simvastatin and protein kinase inhibitors in HCT116wt cells. Commonly used concomitant drugs are mostly neither expected to have anticancer effects nor to interact significantly with anticancer drugs frequently used for the treatment of colorectal cancer.
  •  
2.
  • Calitz, Carlemi, et al. (författare)
  • Influence of extracellular matrix composition on tumour cell behaviour in a biomimetic in vitro model for hepatocellular carcinoma
  • 2023
  • Ingår i: Scientific Reports. - : NATURE PORTFOLIO. - 2045-2322. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The tumor micro-environment (TME) of hepatocellular carcinoma (HCC) consists out of cirrhotic liver tissue and is characterized by an extensive deposition of extracellular matrix proteins (ECM). The evolution from a reversible fibrotic state to end-stage of liver disease, namely cirrhosis, is characterized by an increased deposition of ECM, as well as changes in the exact ECM composition, which both contribute to an increased liver stiffness and can alter tumor phenotype. The goal of this study was to assess how changes in matrix composition and stiffness influence tumor behavior. HCC-cell lines were grown in a biomimetic hydrogel model resembling the stiffness and composition of a fibrotic or cirrhotic liver. When HCC-cells were grown in a matrix resembling a cirrhotic liver, they increased proliferation and protein content, compared to those grown in a fibrotic environment. Tumour nodules spontaneously formed outside the gels, which appeared earlier in cirrhotic conditions and were significantly larger compared to those found outside fibrotic gels. These tumor nodules had an increased expression of markers related to epithelial-to-mesenchymal transition (EMT), when comparing cirrhotic to fibrotic gels. HCC-cells grown in cirrhotic gels were also more resistant to doxorubicin compared with those grown in fibrotic gels or in 2D. Therefore, altering ECM composition affects tumor behavior, for instance by increasing pro-metastatic potential, inducing EMT and reducing response to chemotherapy.
  •  
3.
  • Selvin, Tove, et al. (författare)
  • Phenotypic screening platform identifies statins as enhancers of immune cell-induced cancer cell death.
  • 2023
  • Ingår i: BMC cancer. - : Springer Science and Business Media LLC. - 1471-2407. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • High-throughput screening (HTS) of small molecule drug libraries has greatly facilitated the discovery of new cancer drugs. However, most phenotypic screening platforms used in the field of oncology are based solely on cancer cell populations and do not allow for the identification of immunomodulatory agents.We developed a phenotypic screening platform based on a miniaturized co-culture system with human colorectal cancer- and immune cells, providing a model that recapitulates part of the tumor immune microenvironment (TIME) complexity while simultaneously being compatible with a simple image-based readout. Using this platform, we screened 1,280 small molecule drugs, all approved by the Food and Drug Administration (FDA), and identified statins as enhancers of immune cell-induced cancer cell death.The lipophilic statin pitavastatin had the most potent anti-cancer effect. Further analysis demonstrated that pitavastatin treatment induced a pro-inflammatory cytokine profile as well as an overall pro-inflammatory gene expression profile in our tumor-immune model.Our study provides an in vitro phenotypic screening approach for the identification of immunomodulatory agents and thus addresses a critical gap in the field of immuno-oncology. Our pilot screen identified statins, a drug family gaining increasing interest as repurposing candidates for cancer treatment, as enhancers of immune cell-induced cancer cell death. We speculate that the clinical benefits described for cancer patients receiving statins are not simply caused by a direct effect on the cancer cells but rather are dependent on the combined effect exerted on both cancer and immune cells.
  •  
4.
  • Selvin, Tove (författare)
  • Preclinical tumor-immune modeling : For the identification of immunomodulatory drugs
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • For a long time, the field of cancer research was dominated by a tumor cell-centric view. That, however, changed once it became recognized that medical cancer treatment is largely influenced by the combined effect exerted on both cancer and immune cells. In this work, we aimed to develop and apply preclinical model systems for the identification and evaluation of immunomodulatory anti-cancer agents. In Paper I, we employed single-cell RNA sequencing (scRNA-seq) to investigate immunological effects of trifluridine (FTD), a nucleoside analogue used for the treatment of colorectal cancer (CRC). The study revealed that while FTD induces immunogenic cell death (ICD), it may also attenuate T cell-mediated antitumor responses. In paper II and III, we developed and applied a phenotypic screening platform based on a miniaturized tumor-immune model. In paper II, aiming to identify immunological effects of clinical relevance and provide a reference point for screening novel compound libraries, the model system was used to assess a broad panel of standard anticancer agents. In paper III, the platform was used to screen a drug library containing 1280 small molecule drugs, all approved by the FDA or other agencies. Using this approach, statins were identified as enhancers of immune cell-mediated cancer cell killing. Finally, in paper IV, we developed the immuno-oncology hollow fiber assay (HFA) with the goal of bridging the gap between cell based in vitro assays and more complex mouse models for evaluation of immuno-oncological agents. The HFA is an in vivo assay in which semipermeable fibers are filled with cancer cells and implanted in rodents. We further developed the HFA to incorporate both cancer and immune cells. This novel assay demonstrated the potential to capture immune-mediated cancer cell killing in vivo within a matter of days. Collectively, this work provides a research approach for immuno-oncology drug screening, in vitro validation, and initial in vivo evaluation. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy