SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Graham Colin)) srt2:(2020-2022) srt2:(2020)"

Sökning: (WFRF:(Graham Colin)) srt2:(2020-2022) > (2020)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dhiman, Kunal, et al. (författare)
  • Cerebrospinal fluid neurofilament light concentration predicts brain atrophy and cognition in Alzheimer's disease.
  • 2020
  • Ingår i: Alzheimer's & dementia (Amsterdam, Netherlands). - : Wiley. - 2352-8729. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This study assessed the utility of cerebrospinal fluid (CSF) neurofilament light (NfL) in Alzheimer's disease (AD) diagnosis, its association with amyloid and tau pathology, as well as its potential to predict brain atrophy, cognition, and amyloid accumulation.CSF NfL concentration was measured in 221 participants from the Australian Imaging, Biomarkers & Lifestyle Flagship Study of Ageing (AIBL).CSF NfL levels as well as NfL/amyloid β (Aβ42) were significantly elevated in AD compared to healthy controls (HC; P < .001), and in mild cognitive impairment (MCI) compared to HC (P = .008 NfL; P < .001 NfL/Aβ42). CSF NfL and NfL/Aβ42 differentiated AD from HC with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.84 and 0.90, respectively. CSF NfL and NfL/Aβ42 predicted cortical amyloid load, brain atrophy, and cognition.CSF NfL is a biomarker of neurodegeneration, correlating with cognitive impairment and brain neuropathology.
  •  
2.
  • Kim, Jae-Young, et al. (författare)
  • Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 640
  • Tidskriftsartikel (refereegranskat)abstract
    • 3C 279 is an archetypal blazar with a prominent radio jet that show broadband flux density variability across the entire electromagnetic spectrum. We use an ultra-high angular resolution technique - global Very Long Baseline Interferometry (VLBI) at 1.3mm (230 GHz) - to resolve the innermost jet of 3C 279 in order to study its fine-scale morphology close to the jet base where highly variable-ray emission is thought to originate, according to various models. The source was observed during four days in April 2017 with the Event Horizon Telescope at 230 GHz, including the phased Atacama Large Millimeter/submillimeter Array, at an angular resolution of ∼20 μas (at a redshift of z = 0:536 this corresponds to ∼0:13 pc ∼ 1700 Schwarzschild radii with a black hole mass MBH = 8 × 108 M⊙). Imaging and model-fitting techniques were applied to the data to parameterize the fine-scale source structure and its variation.We find a multicomponent inner jet morphology with the northernmost component elongated perpendicular to the direction of the jet, as imaged at longer wavelengths. The elongated nuclear structure is consistent on all four observing days and across diffierent imaging methods and model-fitting techniques, and therefore appears robust. Owing to its compactness and brightness, we associate the northern nuclear structure as the VLBI "core". This morphology can be interpreted as either a broad resolved jet base or a spatially bent jet.We also find significant day-to-day variations in the closure phases, which appear most pronounced on the triangles with the longest baselines. Our analysis shows that this variation is related to a systematic change of the source structure. Two inner jet components move non-radially at apparent speeds of ∼15 c and ∼20 c (∼1:3 and ∼1:7 μas day-1, respectively), which more strongly supports the scenario of traveling shocks or instabilities in a bent, possibly rotating jet. The observed apparent speeds are also coincident with the 3C 279 large-scale jet kinematics observed at longer (cm) wavelengths, suggesting no significant jet acceleration between the 1.3mm core and the outer jet. The intrinsic brightness temperature of the jet components are ≤1010 K, a magnitude or more lower than typical values seen at ≥7mm wavelengths. The low brightness temperature and morphological complexity suggest that the core region of 3C 279 becomes optically thin at short (mm) wavelengths.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy