SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(WFRF:(Graves J. P.)) srt2:(2015-2019) srt2:(2017)"

Search: (WFRF:(Graves J. P.)) srt2:(2015-2019) > (2017)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • 2017
  • swepub:Mat__t
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Coda, S., et al. (author)
  • Overview of the TCV tokamak program : Scientific progress and facility upgrades
  • 2017
  • In: Nuclear Fusion. - : Institute of Physics Publishing. - 0029-5515 .- 1741-4326. ; 57:10
  • Journal article (peer-reviewed)abstract
    • The TCV tokamak is augmenting its unique historical capabilities (strong shaping, strong electron heating) with ion heating, additional electron heating compatible with high densities, and variable divertor geometry, in a multifaceted upgrade program designed to broaden its operational range without sacrificing its fundamental flexibility. The TCV program is rooted in a three-pronged approach aimed at ITER support, explorations towards DEMO, and fundamental research. A 1 MW, tangential neutral beam injector (NBI) was recently installed and promptly extended the TCV parameter range, with record ion temperatures and toroidal rotation velocities and measurable neutral-beam current drive. ITER-relevant scenario development has received particular attention, with strategies aimed at maximizing performance through optimized discharge trajectories to avoid MHD instabilities, such as peeling-ballooning and neoclassical tearing modes. Experiments on exhaust physics have focused particularly on detachment, a necessary step to a DEMO reactor, in a comprehensive set of conventional and advanced divertor concepts. The specific theoretical prediction of an enhanced radiation region between the two X-points in the low-field-side snowflake-minus configuration was experimentally confirmed. Fundamental investigations of the power decay length in the scrape-off layer (SOL) are progressing rapidly, again in widely varying configurations and in both D and He plasmas; in particular, the double decay length in L-mode limited plasmas was found to be replaced by a single length at high SOL resistivity. Experiments on disruption mitigation by massive gas injection and electron-cyclotron resonance heating (ECRH) have begun in earnest, in parallel with studies of runaway electron generation and control, in both stable and disruptive conditions; a quiescent runaway beam carrying the entire electrical current appears to develop in some cases. Developments in plasma control have benefited from progress in individual controller design and have evolved steadily towards controller integration, mostly within an environment supervised by a tokamak profile control simulator. TCV has demonstrated effective wall conditioning with ECRH in He in support of the preparations for JT-60SA operation.
  •  
6.
  • Ongena, J., et al. (author)
  • Synergetic heating of D-NBI ions in the vicinity of the mode conversion layer in H-D plasmas in JET with the ITER like wall.
  • 2017
  • In: EPJ Web of Conferences. - : EDP Sciences. - 2100-014X.
  • Conference paper (peer-reviewed)abstract
    • This paper discusses the extension of the 'three-ion' species ICRF technique for heating mixture plasmas using fast injected NBI ions as resonant 'third' species. In this scenario the ICRF power is absorbed by the fast beam ions in the vicinity of the mode conversion layer where the left-hand polarized RF electric field E+ is strongly enhanced. The ions in the beam velocity distribution that have a Doppler-shifted resonance close to the mode conversion layer efficiently absorb RF power and undergo acceleration. We show first experimental observations of ICRF heating of D-NBI ions in H-D plasmas in JET with the ITER-like wall. In agreement with theoretical predictions and numerical modelling, acceleration of the D-NBI ions in this D-(DNBI)-H scenario is confirmed by several fast-ion measurements. An extension of the heating scheme discussed here is acceleration of T-NBI and D-NBI ions in D-T plasmas, offering the potential to further boost the Q-value in future D-T campaigns in JET.
  •  
7.
  •  
8.
  • Graves, J. P., et al. (author)
  • Generalised zonal modes in stationary axisymmetric plasmas
  • 2017
  • In: Plasma Physics and Controlled Fusion. - : IOP PUBLISHING LTD. - 0741-3335 .- 1361-6587. ; 59:5
  • Journal article (peer-reviewed)abstract
    • The MHD model enables derivation and analysis of the rich structure of geodesic acoustic modes (GAMs) and zonal modes in axisymmetric magnetic confined plasmas. The modes are identifiable from a single dispersion relation as two branches of slow magnetosonic continua. The lower frequency branch can be identified as a zonal flow (ZF), which in the simplified limit of static plasmas, has vanishing magnetic component. It is shown in this contribution that axisymmetric, and lesser known non-axisymmetric, zonal modes can be derived from MHD and kinetic models. The work provides a comprehensive derivation of the GAMs and ZF continua in stationary toroidally rotating plasmas, and investigates the exact solution and structure of a generalised family of zonal modes in static equilibria.
  •  
9.
  • Panieri, G., et al. (author)
  • Diagenetic Mg-calcite overgrowths on foraminiferal tests in the vicinity of methane seeps.
  • 2017
  • In: Earth and Planetary Science Letters. - : Elsevier BV. - 0012-821X .- 1385-013X. ; 458, s. 203-212
  • Journal article (peer-reviewed)abstract
    • Methane is a potent greenhouse gas and some episodes of past global warming appear to coincide with its massive release from seafloor sediments as suggested by carbon isotope records of foraminifera. Here, we present structural, geochemical, and stable carbon isotope data from single foraminiferal calcite tests and authigenic Mg-calcite overgrowths in a sediment core recovered from an area of active methane seepage in western Svalbard at ca. 340 m water depth. The foraminifera are from intervals in the core where conventional bulk foraminiferal δ13C values are as low as −11.3 ‰. Mg/Ca analyses of the foraminiferal tests reveal that even tests for which there is no morphological evidence for secondary authigenic carbonate can contain Mg-rich interlayers with Mg/Ca up to 220 mmol/mol. Transmission electron microscopy (TEM) of the contact point between the biogenic calcite and authigenic Mg-calcite layers shows that the two phases are structurally indistinguishable and they have the same crystallographic orientation. Secondary ion mass spectrometry (SIMS) analyses reveal that the Mg-rich layers are strongly depleted δ13C (δ13C as low as −34.1 ‰). These very low δ13C values indicate that the authigenic Mg-calcite precipitated from pore waters containing methane-derived dissolved inorganic carbon at the depth of the sulfate–methane transition zone (SMTZ). As the depth of the SMTZ can be located several meters below the sediment-seawater interface, interpretation of low foraminiferal δ13C values in ancient sediments in terms of the history of methane seepage at the seafloor must be undertaken with care.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view