SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(WFRF:(Gudnason Vilmundur)) srt2:(2015-2019) srt2:(2018)"

Search: (WFRF:(Gudnason Vilmundur)) srt2:(2015-2019) > (2018)

  • Result 1-10 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Björk, Jonas, et al. (author)
  • Comparison of glomerular filtration rate estimating equations derived from creatinine and cystatin C : Validation in the Age, Gene/Environment Susceptibility-Reykjavik elderly cohort
  • 2018
  • In: Nephrology Dialysis Transplantation. - : Oxford University Press (OUP). - 0931-0509 .- 1460-2385. ; 33:8, s. 1380-1388
  • Journal article (peer-reviewed)abstract
    • Background. Validation studies comparing glomerular filtration rate (GFR) equations based on standardized creatinine and cystatin C assays in the elderly are needed. The Icelandic Age, Gene/Environment Susceptibility-Kidney cohort was used to compare two pairs of recently developed GFR equations, the revised Lund-Malmö creatinine equation (LMRCr) and the arithmetic mean of the LMRCr and Caucasian, Asian, Paediatric and Adult cystatin C equations (MEANLMRþCAPA), as well as the Full Age Spectrum creatinine equation (FASCr) and its combination with cystatin C (FASCrþCys), with the corresponding pair of Chronic Kidney Disease Epidemiology Collaboration equations (CKD-EPICr and CKD-EPICrþCys). Methods. A total of 805 individuals, 74-93 years of age, underwent measurement of GFR (mGFR) using plasma clearance of iohexol. Four metrics were used to compare the performance of the GFR equations: bias, precision, accuracy [including the percentage of participants with estimated GFR (eGFR) within 30% of mGFR (P30)] and the ability to detect mGFR <60 mL/min/1.73 m2. Results. All equations had a P30 >90%. LMRCr and FASCr yielded significantly higher precision and P30 than CKD-EPICr, while bias was significantly worse. LMRCr, FASCr and CKD-EPICr showed similar ability to detect mGFR <60 mL/min/1.73 m2 based on the area under the receiver operating characteristic curves. MEANLMRþCAPA, FASCrþCys and CKD-EPICrþCys all exhibited consistent improvements compared with the corresponding creatinine-based equations. Conclusion. None of the creatinine-based equations was clearly superior overall in this community-dwelling elderly cohort. The addition of cystatin C improved all of the creatinine-based equations.
  •  
2.
  • Dickerman, Barbra A., et al. (author)
  • Midlife metabolic factors and prostate cancer risk in later life
  • 2018
  • In: International Journal of Cancer. - Hoboken, USA : John Wiley & Sons. - 0020-7136 .- 1097-0215. ; 142:6, s. 1166-1173
  • Journal article (peer-reviewed)abstract
    • Metabolic syndrome is associated with several cancers, but evidence for aggressive prostate cancer is sparse. We prospectively investigated the influence of metabolic syndrome and its components on risk of total prostate cancer and measures of aggressive disease in a cohort of Icelandic men. Men in the Reykjavik Study (n = 9,097, enrolled 1967-1987) were followed for incident (n = 1,084 total; n = 378 advanced; n = 148 high-grade) and fatal (n = 340) prostate cancer until 2014. Cox regression was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for (1) measured metabolic factors at cohort entry (body mass index (BMI), blood pressure, triglycerides, fasting blood glucose) and (2) a metabolic syndrome score (range 0-4) combining the risk factors: BMI ≥30 kg/m2 ; systolic blood pressure (SBP) ≥130 or diastolic blood pressure (DBP) ≥85 mm Hg or taking antihypertensives; triglycerides ≥150 mg/dl; fasting blood glucose ≥100 mg/dl or self-reported type 2 diabetes. Hypertension and type 2 diabetes were associated with a higher risk of total, advanced, high-grade, and fatal prostate cancer, independent of BMI. Neither BMI nor triglycerides were associated with prostate cancer risk. Higher metabolic syndrome score (3-4 vs 0) was associated with a higher risk of fatal prostate cancer (HR 1.55; 95% CI: 0.89, 2.69; p trend = 0.08), although this finding was not statistically significant. Our findings suggest a positive association between midlife hypertension and diabetes and risk of total and aggressive prostate cancer. Further, metabolic syndrome as a combination of factors was associated with an increased risk of fatal prostate cancer.
  •  
3.
  • Evangelou, Evangelos, et al. (author)
  • Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits.
  • 2018
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 50:10, s. 1412-1425
  • Journal article (peer-reviewed)abstract
    • High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also highlight shared genetic architecture between blood pressure and lifestyle exposures. Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future.
  •  
4.
  • Feitosa, Mary F., et al. (author)
  • Novel genetic associations for blood pressure identified via gene-alcohol interaction in up to 570K individuals across multiple ancestries
  • 2018
  • In: PLOS ONE. - : Public library science. - 1932-6203. ; 13:6
  • Journal article (peer-reviewed)abstract
    • Heavy alcohol consumption is an established risk factor for hypertension; the mechanism by which alcohol consumption impact blood pressure (BP) regulation remains unknown. We hypothesized that a genome-wide association study accounting for gene-alcohol consumption interaction for BP might identify additional BP loci and contribute to the understanding of alcohol-related BP regulation. We conducted a large two-stage investigation incorporating joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption interactions. In Stage 1, genome-wide discovery meta-analyses in approximate to 131 K individuals across several ancestry groups yielded 3,514 SNVs (245 loci) with suggestive evidence of association (P <1.0 x 10(-5)). In Stage 2, these SNVs were tested for independent external replication in individuals across multiple ancestries. We identified and replicated (at Bonferroni correction threshold) five novel BP loci (380 SNVs in 21 genes) and 49 previously reported BP loci (2,159 SNVs in 109 genes) in European ancestry, and in multi-ancestry meta-analyses (P < 5.0 x 10(-8)). For African ancestry samples, we detected 18 potentially novel BP loci (P< 5.0 x 10(-8)) in Stage 1 that warrant further replication. Additionally, correlated meta-analysis identified eight novel BP loci (11 genes). Several genes in these loci (e.g., PINX1, GATA4, BLK, FTO and GABBR2 have been previously reported to be associated with alcohol consumption. These findings provide insights into the role of alcohol consumption in the genetic architecture of hypertension.
  •  
5.
  • Imamura, Fumiaki, et al. (author)
  • Fatty acid biomarkers of dairy fat consumption and incidence of type 2 diabetes : A pooled analysis of prospective cohort studies
  • 2018
  • In: PLoS Medicine. - : Public Library of Science (PLoS). - 1549-1277 .- 1549-1676. ; 15:10
  • Journal article (peer-reviewed)abstract
    • Background We aimed to investigate prospective associations of circulating or adipose tissue odd-chain fatty acids 15: 0 and 17: 0 and trans-palmitoleic acid, t16:1n-7, as potential biomarkers of dairy fat intake, with incident type 2 diabetes (T2D). Methods and findings Sixteen prospective cohorts from 12 countries (7 from the United States, 7 from Europe, 1 from Australia, 1 from Taiwan) performed new harmonised individual-level analysis for the prospective associations according to a standardised plan. In total, 63,682 participants with a broad range of baseline ages and BMIs and 15,180 incident cases of T2D over the average of 9 years of follow-up were evaluated. Study-specific results were pooled using inverse-variance-weighted meta-analysis. Prespecified interactions by age, sex, BMI, and race/ethnicity were explored in each cohort and were meta-analysed. Potential heterogeneity by cohort-specific characteristics (regions, lipid compartments used for fatty acid assays) was assessed with metaregression. After adjustment for potential confounders, including measures of adiposity (BMI, waist circumference) and lipogenesis (levels of palmitate, tri-glycerides), higher levels of 15:0, 17:0, and t16:1n-7 were associated with lower incidence of T2D. In the most adjusted model, the hazard ratio (95% CI) for incident T2D per cohort-specific 10th to 90th percentile range of 15:0 was 0.80 (0.73-0.87); of 17:0, 0.65 (0.59-0.72); of t16:1n7, 0.82 (0.70-0.96); and of their sum, 0.71 (0.63-0.79). In exploratory analyses, similar associations for 15:0, 17:0, and the sum of all three fatty acids were present in both genders but stronger in women than in men ((pinteraction) < 0.001). Whereas studying associations with biomarkers has several advantages, as limitations, the biomarkers do not distinguish between different food sources of dairy fat (e.g., cheese, yogurt, milk), and residual confounding by unmeasured or imprecisely measured confounders may exist. Conclusions In a large meta-analysis that pooled the findings from 16 prospective cohort studies, higher levels of 15:0, 17:0, and t16:1n-7 were associated with a lower risk of T2D.
  •  
6.
  • Jackson, Victoria E, et al. (author)
  • Meta-analysis of exome array data identifies six novel genetic loci for lung function.
  • 2018
  • In: Wellcome open research. - : F1000 Research Ltd. - 2398-502X. ; 3
  • Journal article (peer-reviewed)abstract
    • Background: Over 90 regions of the genome have been associated with lung function to date, many of which have also been implicated in chronic obstructive pulmonary disease. Methods: We carried out meta-analyses of exome array data and three lung function measures: forced expiratory volume in one second (FEV 1), forced vital capacity (FVC) and the ratio of FEV 1 to FVC (FEV 1/FVC). These analyses by the SpiroMeta and CHARGE consortia included 60,749 individuals of European ancestry from 23 studies, and 7,721 individuals of African Ancestry from 5 studies in the discovery stage, with follow-up in up to 111,556 independent individuals. Results: We identified significant (P<2·8x10 -7) associations with six SNPs: a nonsynonymous variant in RPAP1, which is predicted to be damaging, three intronic SNPs ( SEC24C, CASC17 and UQCC1) and two intergenic SNPs near to LY86 and FGF10. Expression quantitative trait loci analyses found evidence for regulation of gene expression at three signals and implicated several genes, including TYRO3 and PLAU. Conclusions: Further interrogation of these loci could provide greater understanding of the determinants of lung function and pulmonary disease.
  •  
7.
  • Mahajan, Anubha, et al. (author)
  • Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes
  • 2018
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 50:4, s. 559-571
  • Journal article (peer-reviewed)abstract
    • We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10−7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent ‘false leads’ with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.
  •  
8.
  • Qiu, Chengxuan, et al. (author)
  • Differential associations between retinal signs and CMBs by location : The AGES-Reykjavik Study
  • 2018
  • In: Neurology. - 0028-3878 .- 1526-632X. ; 90:2, s. e142-e148
  • Journal article (peer-reviewed)abstract
    • ObjectiveTo test the hypothesis that age-related macular degeneration (AMD) and retinal microvascular signs are differentially associated with lobar and deep cerebral microbleeds (CMBs).MethodsCMBs in lobar regions indicate cerebral amyloid angiopathy (CAA). -Amyloid deposits are implicated in both CAA and AMD. Deep CMBs are associated with hypertension, a major risk factor for retinal microvascular damage. This population-based cohort study included 2,502 participants in the Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study who undertook binocular digital retinal photographs at baseline (2002-2006) to assess retinal microvascular signs and AMD and brain MRI scan at both baseline and follow-up (2007-2011) to assess CMBs. We assessed retinal microvascular lesion burden by counting the 3 retinal microvascular signs (focal arteriolar narrowing, arteriovenous nicking, and retinopathy) concurrently present in the participant. We used multiple logistic models to examine the association of baseline retinal pathology to incident CMBs detected at follow-up.ResultsDuring an average 5.2 years of follow-up, 461 people (18.3%) developed new CMBs, including 293 in exclusively lobar regions and 168 in deep regions. Pure geographic atrophy was significantly associated with strictly lobar CMBs (multivariable-adjusted odds ratio 2.59, 95% confidence interval [CI] 1.01-6.65) but not with deep CMBs. Concurrently having 2 retinal microvascular signs was associated with a 3-fold (95% CI 1.73-5.20) increased likelihood for deep CMBs but not exclusively lobar CMBs.ConclusionsRetinal microvascular signs and pure geographic atrophy may be associated with deep and exclusively lobar CMBs, respectively, in older people. These results have implications for further research to define the role of small vessel disease in cognitive impairment.
  •  
9.
  • Roselli, Carolina, et al. (author)
  • Multi-ethnic genome-wide association study for atrial fibrillation
  • 2018
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 50:9, s. 1225-1233
  • Journal article (peer-reviewed)abstract
    • Atrial fibrillation (AF) affects more than 33 million individuals worldwide(1) and has a complex heritability(2). We conducted the largest meta-analysis of genome-wide association studies (GWAS) for AF to date, consisting of more than half a million individuals, including 65,446 with AF. In total, we identified 97 loci significantly associated with AF, including 67 that were novel in a combined-ancestry analysis, and 3 that were novel in a European-specific analysis. We sought to identify AF-associated genes at the GWAS loci by performing RNA-sequencing and expression quantitative trait locus analyses in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The identified loci implicate genes enriched within cardiac developmental, electrophysiological, contractile and structural pathways. These results extend our understanding of the biological pathways underlying AF and may facilitate the development of therapeutics for AF.
  •  
10.
  • Turcot, Valerie, et al. (author)
  • Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity
  • 2018
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 50:1, s. 26-41
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are similar to 10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed similar to 7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view