SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(WFRF:(Hammarström Leif)) srt2:(2005-2009) srt2:(2005)"

Search: (WFRF:(Hammarström Leif)) srt2:(2005-2009) > (2005)

  • Result 1-10 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Abrahamsson, Maria, et al. (author)
  • A new strategy for the improvement of photophysical properties in ruthenium(II) polypyridyl complexes. Synthesis and photophysical and electrochemical characterization of six mononuclear ruthenium(II) bisterpyridine-type complexes
  • 2005
  • In: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 44:9, s. 3215-3225
  • Journal article (peer-reviewed)abstract
    • The synthesis and characterization of six ruthenium(II) bistridentate polypyridyl complexes is described. These were designed on the basis of a new approach to increase the excited-state lifetime of ruthenium(II) bisterpyridine-type complexes. By the use of a bipyridylpyridyl methane ligand in place of terpyridine, the coordination environment of the metal ion becomes nearly octahedral and the rate of deactivation via ligand-field (i.e., metal-centered) states was reduced as shown by temperature-dependent emission lifetime studies. Still, the possibility to make quasi-linear donor-ruthenium-acceptor triads is maintained in the complexes. The most promising complex shows an excited-state lifet me of tau = 15 ns in alcohol solutions at room temperature, which should be compared to a lifetime of tau = 0.25 ns for [Ru(tpy)(2)](2+). The X-ray structure of the new complex indeed shows a more octahedral geometry than that of [Ru(tpy)(2)](2+). Most importantly, the high excited-state energy was retained, and thus, so was the potential high reactivity of the excited complex, which has not been the case with previously published strategies based on bistridentate complexes.
  •  
3.
  • Borgström, Magnus, 1973- (author)
  • Controlling Charge and Energy Transfer Processes in Artificial Photosynthesis : From Picosecond to Millisecond Dynamics
  • 2005
  • Doctoral thesis (other academic/artistic)abstract
    • This thesis describes an interdisciplinary project, where the aim is to mimic the initial reactions in photosynthesis. In photosynthesis, the absorption of light is followed by the formation of charge-separated states. The energy stored in these charge-separated states is further used for the oxidation of water and reduction of carbon dioxide. In this thesis the photo-induced processes in a range of supramolecular complexes have been investigated with time resolved spectroscopic techniques. The complexes studied consist of three types of units; photosensitizers (P) capable of absorbing light, electron acceptors (A) that are easily reduced and electron donors (D) that are easily oxidised. Our results are important for the future design of artificial photosystems, where the goal is to produce hydrogen from light and water. Two molecular triads with a D-P-A architecture are presented. In the first one, a photo-induced charge-separated state was formed in an unusually high yield (φ>90%). In the second triad, photo-irradiation led to the formation of an extremely long-lived charge-separated state (τ = 500 ms at 140K). This is also the first synthetically made triad containing a dinuclear manganese unit as electron donor.Further, two sets of P-A dyads are presented. In both, the expected photo-induced reduction of the electron acceptor is diminished due to competing energy transfer to the triplet state of the acceptor.Finally, a P-P-A complex containing two separate photosensitizers is described. The idea is to produce high-energy charge-separated states by using the energy from two photons.
  •  
4.
  • Borgström, Magnus, et al. (author)
  • Light induced manganese oxidation and long-lived charge separation in a Mn-2(II,II)-Ru-II (bpy)(3)-acceptor triad
  • 2005
  • In: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 127:49, s. 17504-17515
  • Journal article (peer-reviewed)abstract
    • The photoinduced electron-transfer reactions in a Mn-2(II.II)-R-II-NDI triad (1) ([Mn-2(bpmp)(OAc)(2)](+), bpmp = 2,6-bis[bis(2-pyridylmethyl)aminomethyl]-4-methyiphenolate and OAc = acetate, R-II = trisbipyridine ruthenium(II), and NDI = naphthalenediimide) have been studied by time-resolved optical and EPR spectroscopy. Complex 1 is the first synthetically linked electron donor-sensitizer-acceptor triad in which a manganese complex plays the role of the donor. EPR spectroscopy was used to directly demonstrate the light induced formation of both products: the oxidized manganese dimer complex (Mn-2(II.III)) and the reduced naphthalenediimide (NDIcenter dot-) acceptor moieties, while optical spectroscopy was used to follow the kinetic evolution of the [Ru(bpy)(3)](2+) intermediate states and the NDIcenter dot- radical in a wide temperature range. The average lifetime of the NDI- radical is ca. 600 mu s at room temperature, which is at least 2 orders of magnitude longer than that for previously reported triads based on a [Ru(bpy)(3)](2+) photosensitizer. At 140 K, this intramolecular recombination was dramatically slowed, displaying a lifetime of 0.1-1 s, which is comparable to many of the naturally occurring charge-separated states in photosynthetic reaction centra. It was found that the long recombination lifetime could be explained by an unusually large reorganization energy (lambda approximate to 2.0 eV), due to a large inner reorganization of the manganese complex. This makes the recombination reaction strongly activated despite the large driving force (-Delta G degrees = 1.07 eV). Thus, the intrinsic properties of the manganese complex are favorable for creating a long-lived charge separation in the "Marcus normal region" also when the charge separated state energy is high.
  •  
5.
  • Borgström, Magnus, et al. (author)
  • Sensitized hole injection of phosphorus porphyrin into NiO : Toward new photovoltaic devices
  • 2005
  • In: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 109:48, s. 22928-22934
  • Journal article (peer-reviewed)abstract
    • This paper describes the preparation and the characterization of a photovoltaic cell based on the sensitization of a wide band gap p-type semiconductor (NiO) with a phosphorus porphyrin. A photophysical study with femtosecond transient absorption spectroscopy showed that light excitation of the phosphorus porphyrin chemisorbed on NiO particles induces a very rapid interfacial hole injection into the valence band of NiO, occurring mainly on the 2-20 ps time scale. This is followed by a recombination in which ca. 80% of the ground-state reactants are regenerated within 1 ns. A photoelectrochernical device, prepared with a nanocrystalline NiO electrode coated with the phosphorus porphyrin, yields a cathodic photocurrent indicating that electrons indeed flow from the NiO electrode toward the solution. The low incident-to-photocurrent efficiency (IPCE) can be rationalized by the rapid back recombination reaction between the reduced sensitizer and the injected hole which prevents an efficient regeneration of the sensitizer ground state from the iodide/triiodide redox mediator. To the best of our knowledge, this work represents the first example of a photovoltaic cell in which a mechanism of hole photoinjection has been characterized.
  •  
6.
  •  
7.
  •  
8.
  • Modin, Judit, 1977- (author)
  • Synthesis and Evaluation of Photoactive Pyridine Complexes for Electron Transfer Studies and Photoelectrochemical Applications
  • 2005
  • Doctoral thesis (other academic/artistic)abstract
    • In this thesis, the preparation of new photoactive substances containing mono- and bipyridines coordinated to ruthenium is presented together with initial evaluations of their photoelectrochemical and photophysical properties. Complexes of the type Ru(bpy)2(4-X-py)2 (X = SH, COOH) were prepared and used in Grätzel-type solar cells based on ZnO. The results show that the thiol complex binds to the surface but give rather low solar cell efficiencies. Different routes to obtain Ru(bpy)2(4,4´-dithio-2,2´-bipyridine) were evaluated, among them substitution reactions on 4,4´-dichloro-2,2´-bipyridine coordinated to ruthenium. Due to reactivity issues, the target sulphur-containing complex has not yet been obtained.The synthesis of methanofullerenes, fulleropyrrolidines and –pyrazolines are presented, among them dyads containing Ru(bpy)n-units. A common feature for the dyads is the unusually short linkers between the fullerene and the ruthenium complex. Dyad preparations were in some cases simplified by carrying out the reactions in the presence of silver salts.A preliminary evaluation of the emission of the dyads showed almost complete quenching of the excited state of a pyrrolidine-based dyad, whereas emission remained from the pyrazoline-based ones. Whether this was due to incomplete quenching of the excited states of the ruthenium complex, or induced by the presence of hydrazones has yet to be revealed.The use of fullerene-substituted malonic acid and its ethyl ester as dyes in Grätzel-type solar cells resulted in even lower efficiencies (IPCE) than for bare TiO2. This could be due to electron transfer in the reverse direction compared to what is observed for ruthenium complexes. Thus, these fullerene derivatives are not suitable as sensitisers for Grätzel-type solar cells.
  •  
9.
  •  
10.
  • Morandeira, Ana, et al. (author)
  • Photoinduced ultrafast dynamics of comnarin 343 sensitized p-type-nanostructured NiO films
  • 2005
  • In: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 109:41, s. 19403-19410
  • Journal article (peer-reviewed)abstract
    • Photoinduced electron transfer from the valence band of nanocrystalline NiO, a p-type semiconductor, to an excited bound dye, coumarin 343, and the subsequent recombination have been measured by femtosecond transient absorbance spectroscopy probing with white light. It was found that both processes are nonexponential. The photoinduced electron transfer from the semiconductor to the excited bound dye has an ultrafast component (similar to 200 fs), which is comparable to the time constants measured for photoinduced electron injection in C343-TiO2 colloid solutions. The process is very efficient and constitutes the main path of deactivation of the excited dye. Back electron transfer is also remarkably fast, with the main part of the recombination process happening with a time constant of similar to 20 ps. Dye-sensitized nanostructured p-type semiconductors are attractive materials due to their potential use as photocathodes in dye-sensitized solar cells and solid electrolytes in solid-state dye-sensitized solar cells. To our knowledge, this is the first time that the photoinduced electron-transfer kinetics of a sensitized p-type semiconductor has been studied.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view