SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Hasegawa Y)) srt2:(2020-2024) srt2:(2020)"

Sökning: (WFRF:(Hasegawa Y)) srt2:(2020-2024) > (2020)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Campbell, PJ, et al. (författare)
  • Pan-cancer analysis of whole genomes
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
2.
  • Sugai, H., et al. (författare)
  • Updated Design of the CMB Polarization Experiment Satellite LiteBIRD
  • 2020
  • Ingår i: Journal of Low Temperature Physics. - : Springer Science and Business Media LLC. - 0022-2291 .- 1573-7357. ; 199:3-4, s. 1107-1117
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent developments of transition-edge sensors (TESs), based on extensive experience in ground-based experiments, have been making the sensor techniques mature enough for their application on future satellite cosmic microwave background (CMB) polarization experiments. LiteBIRD is in the most advanced phase among such future satellites, targeting its launch in Japanese Fiscal Year 2027 (2027FY) with JAXA's H3 rocket. It will accommodate more than 4000 TESs in focal planes of reflective low-frequency and refractive medium-and-high-frequency telescopes in order to detect a signature imprinted on the CMB by the primordial gravitational waves predicted in cosmic inflation. The total wide frequency coverage between 34 and 448 GHz enables us to extract such weak spiral polarization patterns through the precise subtraction of our Galaxy's foreground emission by using spectral differences among CMB and foreground signals. Telescopes are cooled down to 5 K for suppressing thermal noise and contain polarization modulators with transmissive half-wave plates at individual apertures for separating sky polarization signals from artificial polarization and for mitigating from instrumental 1/f noise. Passive cooling by using V-grooves supports active cooling with mechanical coolers as well as adiabatic demagnetization refrigerators. Sky observations from the second Sun-Earth Lagrangian point, L2, are planned for 3 years. An international collaboration between Japan, the USA, Canada, and Europe is sharing various roles. In May 2019, the Institute of Space and Astronautical Science, JAXA, selected LiteBIRD as the strategic large mission No. 2.
  •  
3.
  •  
4.
  • Ramilowski, JA, et al. (författare)
  • Functional annotation of human long noncoding RNAs via molecular phenotyping
  • 2020
  • Ingår i: Genome research. - : Cold Spring Harbor Laboratory. - 1549-5469 .- 1088-9051. ; 30:7, s. 1060-1072
  • Tidskriftsartikel (refereegranskat)abstract
    • Long noncoding RNAs (lncRNAs) constitute the majority of transcripts in the mammalian genomes, and yet, their functions remain largely unknown. As part of the FANTOM6 project, we systematically knocked down the expression of 285 lncRNAs in human dermal fibroblasts and quantified cellular growth, morphological changes, and transcriptomic responses using Capped Analysis of Gene Expression (CAGE). Antisense oligonucleotides targeting the same lncRNAs exhibited global concordance, and the molecular phenotype, measured by CAGE, recapitulated the observed cellular phenotypes while providing additional insights on the affected genes and pathways. Here, we disseminate the largest-to-date lncRNA knockdown data set with molecular phenotyping (over 1000 CAGE deep-sequencing libraries) for further exploration and highlight functional roles for ZNF213-AS1 and lnc-KHDC3L-2.
  •  
5.
  • Hasegawa, H., et al. (författare)
  • Generation of Turbulence in Kelvin-Helmholtz Vortices at the Earth's Magnetopause : Magnetospheric Multiscale Observations
  • 2020
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 125:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The Kelvin-Helmholtz instability (KHI) at Earth's magnetopause and associated turbulence are suggested to play a role in the transport of mass and momentum from the solar wind into Earth's magnetosphere. We investigate electromagnetic turbulence observed in Kelvin-Helmholtz vortices encountered at the dusk flank magnetopause by the Magnetospheric Multiscale (MMS) spacecraft under northward interplanetary magnetic field (IMF) conditions in order to reveal its generation process, mode properties, and role. A comparison with another MMS event at the dayside magnetopause with reconnection but no KHI signatures under a similar IMF condition indicates that while high-latitude magnetopause reconnection excites a modest level of turbulence in the dayside low-latitude boundary layer, the KHI further amplifies the turbulence, leading to magnetic energy spectra with a power law index -5/3 at magnetohydrodynamic scales even in its early nonlinear phase. The mode of the electromagnetic turbulence is analyzed with a single-spacecraft method based on Ampere's law, developed by Bellan (2016, https://doi.org/10.1002/2016JA022827), for estimating wave vectors as a function of spacecraft frame frequency. The results suggest that the turbulence does not consist of propagating normal-mode waves but is due to interlaced magnetic flux tubes advected by plasma flows in the vortices. The turbulence at sub-ion scales in the early nonlinear phase of the KHI may not be the cause of the plasma transport across the magnetopause but rather a consequence of three-dimensional vortex-induced reconnection, the process that can cause an efficient transport by producing tangled reconnected field lines. Plain Language Summary Turbulence is ubiquitous in nature and plays an important role in material mixing and energy transport. Turbulence in space plasmas is characterized by fluctuations of flow velocity and/or electromagnetic fields over a broad frequency range and/or length scales and is believed to be the key to efficient plasma transport and heating. However, its generation mechanism is not fully understood because turbulence in space is often fully developed or already relaxed when observed. By analyzing high-resolution plasma and electromagnetic field data taken by the Magnetospheric Multiscale spacecraft, we study the generation process of electromagnetic turbulence at the outer boundary of Earth's magnetosphere, called the magnetopause, where either a flow shear-driven Kelvin-Helmholtz instability or magnetic reconnection or both could drive turbulence. It is shown that while dayside reconnection generates a modest level of turbulence at the magnetopause near noon, the flow shear instability further amplifies the turbulence at the flank magnetopause. Our analysis also suggests that the turbulence may not be the primary cause of plasma transport from solar wind into the magnetosphere but rather a consequence of the flow shear-induced reconnection that is likely the primary cause of plasma transport at the dayside flank under northward solar wind magnetic field conditions.
  •  
6.
  • Hwang, K-J, et al. (författare)
  • Magnetic Reconnection Inside a Flux Rope Induced by Kelvin-Helmholtz Vortices
  • 2020
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 125:4
  • Tidskriftsartikel (refereegranskat)abstract
    • On 5 May 2017, MMS observed a crater-type flux rope on the dawnside tailward magnetopause with fluctuations. The boundary-normal analysis shows that the fluctuations can be attributed to nonlinear Kelvin-Helmholtz (KH) waves. Reconnection signatures such as flow reversals and Joule dissipation were identified at the leading and trailing edges of the flux rope. In particular, strong northward electron jets observed at the trailing edge indicated midlatitude reconnection associated with the 3-D structure of the KH vortex. The scale size of the flux rope, together with reconnection signatures, strongly supports the interpretation that the flux rope was generated locally by KH vortex-induced reconnection. The center of the flux rope also displayed signatures of guide-field reconnection (out-of-plane electron jets, parallel electron heating, and Joule dissipation). These signatures indicate that an interface between two interlinked flux tubes was undergoing interaction, causing a local magnetic depression, resulting in an M-shaped crater flux rope, as supported by reconstruction.
  •  
7.
  • Jiang, Mingkai, et al. (författare)
  • The fate of carbon in a mature forest under carbon dioxide enrichment
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 580:7802, s. 227-231
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric carbon dioxide enrichment (eCO2) can enhance plant carbon uptake and growth1–5, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration6. Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth3–5, it is unclear whether mature forests respond to eCO2 in a similar way. In mature trees and forest stands7–10, photosynthetic uptake has been found to increase under eCO2 without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO2 unclear4,5,7–11. Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO2 exposure. We show that, although the eCO2 treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO2, and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests.
  •  
8.
  • Kim, Jae-Young, et al. (författare)
  • Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 640
  • Tidskriftsartikel (refereegranskat)abstract
    • 3C 279 is an archetypal blazar with a prominent radio jet that show broadband flux density variability across the entire electromagnetic spectrum. We use an ultra-high angular resolution technique - global Very Long Baseline Interferometry (VLBI) at 1.3mm (230 GHz) - to resolve the innermost jet of 3C 279 in order to study its fine-scale morphology close to the jet base where highly variable-ray emission is thought to originate, according to various models. The source was observed during four days in April 2017 with the Event Horizon Telescope at 230 GHz, including the phased Atacama Large Millimeter/submillimeter Array, at an angular resolution of ∼20 μas (at a redshift of z = 0:536 this corresponds to ∼0:13 pc ∼ 1700 Schwarzschild radii with a black hole mass MBH = 8 × 108 M⊙). Imaging and model-fitting techniques were applied to the data to parameterize the fine-scale source structure and its variation.We find a multicomponent inner jet morphology with the northernmost component elongated perpendicular to the direction of the jet, as imaged at longer wavelengths. The elongated nuclear structure is consistent on all four observing days and across diffierent imaging methods and model-fitting techniques, and therefore appears robust. Owing to its compactness and brightness, we associate the northern nuclear structure as the VLBI "core". This morphology can be interpreted as either a broad resolved jet base or a spatially bent jet.We also find significant day-to-day variations in the closure phases, which appear most pronounced on the triangles with the longest baselines. Our analysis shows that this variation is related to a systematic change of the source structure. Two inner jet components move non-radially at apparent speeds of ∼15 c and ∼20 c (∼1:3 and ∼1:7 μas day-1, respectively), which more strongly supports the scenario of traveling shocks or instabilities in a bent, possibly rotating jet. The observed apparent speeds are also coincident with the 3C 279 large-scale jet kinematics observed at longer (cm) wavelengths, suggesting no significant jet acceleration between the 1.3mm core and the outer jet. The intrinsic brightness temperature of the jet components are ≤1010 K, a magnitude or more lower than typical values seen at ≥7mm wavelengths. The low brightness temperature and morphological complexity suggest that the core region of 3C 279 becomes optically thin at short (mm) wavelengths.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy