SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Heckemann Rolf A.)) srt2:(2014)"

Sökning: (WFRF:(Heckemann Rolf A.)) > (2014)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ciumas, C., et al. (författare)
  • White matter development in children with benign childhood epilepsy with centro-temporal spikes
  • 2014
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 137:4, s. 1095-1106
  • Tidskriftsartikel (refereegranskat)abstract
    • Benign childhood epilepsy with centro-temporal spikes (BCECTS) is associated with cognitive disturbances thought to reflect interference between the epileptic focus and brain development. Using diffusion tensor imaging, Ciumas et al. demonstrate abnormal maturation of white matter at the epileptic focus, which correlates with duration of epilepsy and cognitive performance.Benign childhood epilepsy with centro-temporal spikes (BCECTS) is a unique form of non-lesional age-dependent epilepsy with rare seizures, focal electroencepalographic abnormalities affecting the same well delineated cortical region in most patients, and frequent mild to moderate cognitive dysfunctions. In this condition, it is hypothesized that interictal electroencepalographic discharges might interfere with local brain maturation, resulting in altered cognition. Diffusion tensor imaging allows testing of this hypothesis by investigating the white matter microstructure, and has previously proved sensitive to epilepsy-related alterations of fractional anisotropy and diffusivity. However, no diffusion tensor imaging study has yet been performed with a focus on BCECTS. We investigated 25 children suffering from BCECTS and 25 age-matched control subjects using diffusion tensor imaging, 3D-T-1 magnetic resonance imaging, and a battery of neuropsychological tests including Conner's scale and Wechsler Intelligence Scale for Children (fourth revision). Electroencephalography was also performed in all patients within 2 months of the magnetic resonance imaging assessment. Parametric maps of fractional anisotropy, mean-, radial-, and axial diffusivity were extracted from diffusion tensor imaging data. Patients were compared with control subjects using voxel-based statistics and family-wise error correction for multiple comparisons. Each patient was also compared to control subjects. Fractional anisotropy and diffusivity images were correlated to neuropsychological and clinical variables. Group analysis showed significantly reduced fractional anisotropy and increased diffusivity in patients compared with control subjects, predominantly over the left pre- and postcentral gyri and ipsilateral to the electroencephalographic focus. At the individual level, regions of significant differences were observed in 10 patients (40%) for anisotropy (eight reduced fractional anisotropy, one increased fractional anisotropy, one both), and 17 (56%) for diffusivity (13 increased, one reduced, three both). There were significant negative correlations between fractional anisotropy maps and duration of epilepsy in the precentral gyri, bilaterally, and in the left postcentral gyrus. Accordingly, 9 of 12 patients (75%) with duration of epilepsy > 12 months showed significantly reduced fractional anisotropy versus none of the 13 patients with duration of epilepsy 12 months. Diffusivity maps positively correlated with duration of epilepsy in the cuneus. Children with BCECTS demonstrate alterations in the microstructure of the white matter, undetectable with conventional magnetic resonance imaging, predominating over the regions displaying chronic interictal epileptiform discharges. The association observed between diffusion tensor imaging changes, duration of epilepsy and cognitive performance appears compatible with the hypothesis that interictal epileptic activity alters brain maturation, which could in turn lead to cognitive dysfunction. However, such cross-sectional association does not demonstrate causality, and other hitherto unidentified factors could represent the common cause to part or all of the observed findings.
  •  
2.
  • Rizzo, G., et al. (författare)
  • The predictive power of brain mRNA mappings for in vivo protein density: a positron emission tomography correlation study
  • 2014
  • Ingår i: Journal of Cerebral Blood Flow and Metabolism. - : SAGE Publications. - 0271-678X .- 1559-7016. ; 34:5, s. 827-835
  • Tidskriftsartikel (refereegranskat)abstract
    • Substantial efforts are being spent on postmortem mRNA transcription mapping on the assumption that in vivo protein distribution can be predicted from such data. We tested this assumption by comparing mRNA transcription maps from the Allen Human Brain Atlas with reference protein concentration maps acquired with positron emission tomography (PET) in two representative systems of neurotransmission (opioid and serotoninergic). We found a tight correlation between mRNA expression and specific binding with 5-HT1A receptors measured with PET, but for opioid receptors, the correlation was weak. The discrepancy can be explained by differences in expression regulation between the two systems: transcriptional mechanisms dominate the regulation in the serotoninergic system, whereas in the opioid system proteins are further modulated after transcription. We conclude that mRNA information can be exploited for systems where translational mechanisms predominantly regulate expression. Where posttranscriptional mechanisms are important, mRNA data have to be interpreted with caution. The methodology developed here can be used for probing assumptions about the relationship of mRNA and protein in multiple neurotransmission systems.
  •  
3.
  • Klein-Koerkamp, Yanica, et al. (författare)
  • Amygdalar atrophy in early Alzheimer's disease
  • 2014
  • Ingår i: Current Alzheimer Research. - : Bentham Science Publishers Ltd.. - 1567-2050 .- 1875-5828. ; 11:3, s. 239-252
  • Tidskriftsartikel (refereegranskat)abstract
    • Current research suggests that amygdalar volumes in patients with Alzheimer's disease (AD) may be a relevant measure for its early diagnosis. However, findings are still inconclusive and controversial, partly because studies did not focus on the earliest stage of the disease. In this study, we measured amygdalar atrophy in 48 AD patients and 82 healthy controls (HC) by using a multi-atlas procedure, MAPER. Both hippocampal and amygdalar volumes, normalized by intracranial volume, were significantly reduced in AD compared with HC. The volume loss in the two structures was of similar magnitude (~24%). Amygdalar volume loss in AD predicted memory impairment after we controlled for age, gender, education, and, more important, hippocampal volume, indicating that memory decline correlates with amygdalar atrophy over and above hippocampal atrophy. Amygdalar volume may thus be as useful as hippocampal volume for the diagnosis of early AD. In addition, it could be an independent marker of cognitive decline. The role of the amygdala in AD should be reconsidered to guide further research and clinical practice. © 2014 Bentham Science Publishers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy