SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Hedman Rickard)) srt2:(2015)"

Sökning: (WFRF:(Hedman Rickard)) > (2015)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cymer, Florian, et al. (författare)
  • Exploration of the Arrest Peptide Sequence Space Reveals Arrest-enhanced Variants
  • 2015
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 290:16, s. 10208-10215
  • Tidskriftsartikel (refereegranskat)abstract
    • Translational arrest peptides (APs) are short stretches of polypeptides that induce translational stalling when synthesized on a ribosome. Mechanical pulling forces acting on the nascent chain can weaken or even abolish stalling. APs can therefore be used as in vivo force sensors, making it possible to measure the forces that act on a nascent chain during translation with single-residue resolution. It is also possible to score the relative strengths of APs by subjecting them to a given pulling force and ranking them according to stalling efficiency. Using the latter approach, we now report an extensive mutagenesis scan of a strong mutant variant of the Mannheimia succiniciproducens SecM AP and identify mutations that further increase the stalling efficiency. Combining three such mutations, we designed an AP that withstands the strongest pulling force we are able to generate at present. We further show that diproline stretches in a nascent protein act as very strong APs when translation is carried out in the absence of elongation factor P. Our findings highlight critical residues in APs, show that certain amino acid sequences induce very strong translational arrest and provide a toolbox of APs of varying strengths that can be used for in vivo force measurements.
  •  
2.
  • Hedman, Rickard, 1983- (författare)
  • Dynamics of peptide chains during co-translational translocation, membrane integration & domain folding
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The biosynthesis of proteins occurs at the ribosomes, where amino acids are linked together into linear chains. Nascent protein chains may undergo several different processes during their synthesis. Some proteins begin to fold, while others interact with chaperones, targeting factors or processing enzymes. Nascent membrane proteins are targeted to the cell membrane for integration, which involves the translocation of periplasmic domains and the insertion of membrane-embedded parts.The aim of this thesis was to gain insights about the dynamics of nascent peptide chains undergoing folding, membrane translocation and integration. To this end, we explored the use of arrest peptides (APs) as force sensors. APs stall ribosomes when translated unless there is tension in the nascent peptide chain: the higher the tension, the more full-length protein can be detected. By using APs, we could show that a transmembrane helix is strongly ‘pulled’ twice on its way into the membrane and that strong electric forces act on negatively charged peptide segments translocating through the membrane. Furthermore, we discovered that APs could be used to detect protein folding and made the surprising discovery that a small protein domain folded well inside the ribosomal tunnel. Finally, we explored the arrest-stability of a large set of AP variants and found two extremely stable APs.
  •  
3.
  • Ismail, Nurzian, et al. (författare)
  • Charge-driven dynamics of nascent-chain movement through the SecYEG translocon
  • 2015
  • Ingår i: Nature Structural & Molecular Biology. - : Springer Science and Business Media LLC. - 1545-9993 .- 1545-9985. ; 22:2, s. 145-149
  • Tidskriftsartikel (refereegranskat)abstract
    • On average, every fifth residue in secretory proteins carries either a positive or a negative charge. In a bacterium such as Escherichia coli, charged residues are exposed to an electric field as they transit through the inner membrane, and this should generate a fluctuating electric force on a translocating nascent chain. Here, we have used translational arrest peptides as in vivo force sensors to measure this electric force during cotranslational chain translocation through the SecYEG translocon. We find that charged residues experience a biphasic electric force as they move across the membrane, including an early component with a maximum when they are 47-49 residues away from the ribosomal P site, followed by a more slowly varying component. The early component is generated by the transmembrane electric potential, whereas the second may reflect interactions between charged residues and the periplasmic membrane surface.
  •  
4.
  • Nilsson, Ola B., et al. (författare)
  • Cotranslational Protein Folding inside the Ribosome Exit Tunnel
  • 2015
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 12:10, s. 1533-1540
  • Tidskriftsartikel (refereegranskat)abstract
    • At what point during translation do proteins fold? It is well established that proteins can fold cotranslationally outside the ribosome exit tunnel, whereas studies of folding inside the exit tunnel have so far detected only the formation of helical secondary structure and collapsed or partially structured folding intermediates. Here, using a combination of co-translational nascent chain force measurements, inter-subunit fluorescence resonance energy transfer studies on single translating ribosomes, molecular dynamics simulations, and cryoelectron microscopy, we show that a small zinc-finger domain protein can fold deep inside the vestibule of the ribosome exit tunnel. Thus, for small protein domains, the ribosome itself can provide the kind of sheltered folding environment that chaperones provide for larger proteins.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy