SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Herbst E.)) srt2:(2015-2019) srt2:(2018)"

Sökning: (WFRF:(Herbst E.)) srt2:(2015-2019) > (2018)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Franz, D, et al. (författare)
  • Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe´s terrestrial ecosystems: a review
  • 2018
  • Ingår i: International Agrophysics. - : Walter de Gruyter GmbH. - 0236-8722 .- 2300-8725. ; 32, s. 439-455
  • Tidskriftsartikel (refereegranskat)abstract
    • Research infrastructures play a key role in launching a new generation of integrated long-term, geographically distributed observation programmes designed to monitor climate change, better understand its impacts on global ecosystems, and evaluate possible mitigation and adaptation strategies. The pan-European Integrated Carbon Observation System combines carbon and greenhouse gas (GHG; CO2, CH4, N2O, H2O) observations within the atmosphere, terrestrial ecosystems and oceans. High-precision measurements are obtained using standardised methodologies, are centrally processed and openly available in a traceable and verifiable fashion in combination with detailed metadata. The Integrated Carbon Observation System ecosystem station network aims to sample climate and land-cover variability across Europe. In addition to GHG flux measurements, a large set of complementary data (including management practices, vegetation and soil characteristics) is collected to support the interpretation, spatial upscaling and modelling of observed ecosystem carbon and GHG dynamics. The applied sampling design was developed and formulated in protocols by the scientific community, representing a trade-off between an ideal dataset and practical feasibility. The use of open-access, high-quality and multi-level data products by different user communities is crucial for the Integrated Carbon Observation System in order to achieve its scientific potential and societal value.
  •  
2.
  • Nemitz, E, et al. (författare)
  • Standardisation of eddy-covariance flux measurements of methane and nitrous oxide
  • 2018
  • Ingår i: International Agrophysics. - : Walter de Gruyter GmbH. - 0236-8722 .- 2300-8725. ; 32, s. 517-549
  • Tidskriftsartikel (refereegranskat)abstract
    • Commercially available fast-response analysers for methane (CH4) and nitrous oxide (N2O) have recently become more sensitive, more robust and easier to operate. This has made their application for long-term flux measurements with the eddycovariance method more feasible. Unlike for carbon dioxide (CO2) and water vapour (H2O), there have so far been no guidelines on how to optimise and standardise the measurements. This paper reviews the state-of-the-art of the various steps of the measurements and discusses aspects such as instrument selection, setup and maintenance, data processing as well as the additional measurements needed to aid interpretation and gap-filling. It presents the methodological protocol for eddy covariance measurements of CH4 and N2O fluxes as agreed for the ecosystem station network of the pan-European Research Infrastructure Integrated Carbon Observation System and provides a first international standard that is suggested to be adopted more widely. Fluxes can be episodic and the processes controlling the fluxes are complex, preventing simple mechanistic gap-filling strategies. Fluxes are often near or below the detection limit, requiring additional care during data processing. The protocol sets out the best practice for these conditions to avoid biasing the results and long-term budgets. It summarises the current approach to gap-filling.
  •  
3.
  • Unterseher, Martin, et al. (författare)
  • Mycobiomes of sympatric Amorphophallus albispathus (Araceae) and Camellia sinensis (Theaceae) – a case study reveals clear tissue preferences and differences in diversity and composition
  • 2018
  • Ingår i: Mycological Progress. - : Springer Science and Business Media LLC. - 1617-416X .- 1861-8952. ; 17:4, s. 489-500
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiple biotic and abiotic parameters influence the dynamics of individual fungal species and entire communities. Major drivers for tropical plant endophytes are undoubtedly seasonality, local habitat conditions and biogeography. However, host specialization and tissue preferences also contribute to the structuring of endophytic mycobiomes. To elucidate such specializations and preferences, we sampled two commercially important, unrelated plant species, Amorphophallus albispathus and Camellia sinensis (tea plant) simultaneously at close proximity. The mycobiomes of different tissue types were assessed with high-throughput amplicon sequencing of the internal transcribed spacer DNA region. Both plants hosted different fungal communities and varied in α- and β-diversity, despite their neighboring occurrence. However, the fungal assemblages of Amorphophallus leaflets shared taxa with the mycobiomes of tea leaves, thereby suggesting common driving forces for leaf-inhabiting fungi irrespective of host plant identity. The mycobiome composition and diversity of tea leaves was clearly driven by leaf age. We suggest that the very youngest tea leaves are colonized by stochastic processes, while mycobiomes of old leaves are rather similar as the result of progressive succession. The biodiversity of fungi associated with A. albispathus was characterized by a large number of unclassified OTUs (at genus and species level) and by tissue-specific composition.This study is the first cultivation-independent high-throughput assessment of fungal biodiversity of an Amorphophallus species, and additionally expands the knowledge base on fungi associated with tea plants.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy