SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Hogan Kelly)) srt2:(2015-2019)"

Sökning: (WFRF:(Hogan Kelly)) > (2015-2019)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baek, Sungmin, et al. (författare)
  • The Alternative Splicing Regulator Nova2 Constrains Vascular Erk Signaling to Limit Specification of the Lymphatic Lineage
  • 2019
  • Ingår i: Developmental Cell. - : CELL PRESS. - 1534-5807 .- 1878-1551. ; 49:2, s. 279-292
  • Tidskriftsartikel (refereegranskat)abstract
    • The correct assignment of cell fate within fields of multipotent progenitors is essential for accurate tissue diversification. The first lymphatic vessels arise from pre-existing veins after venous endothelial cells become specified as lymphatic progenitors. Prox1 specifies lymphatic fate and labels these progenitors; however, the mechanisms restricting Prox1 expression and limiting the progenitor pool remain unknown. We identified a zebrafish mutant that displayed premature, expanded, and prolonged lymphatic specification. The gene responsible encodes the regulator of alternative splicing, Nova2. In zebrafish and human endothelial cells, Nova2 selectively regulates pre-mRNA splicing for components of signaling pathways and phosphoproteins. Nova2-deficient endothelial cells display increased Mapk/Erk signaling, and Prox1 expression is dynamically controlled by Erk signaling. We identify a mechanism whereby Nova2-regulated splicing constrains Erk signaling, thus limiting lymphatic progenitor cell specification. This identifies the capacity of a factor that tunes mRNA splicing to control assignment of cell fate during vascular differentiation.
  •  
2.
  • Chiang, Ivy Kim-Ni, et al. (författare)
  • SoxF factors induce Notch1 expression via direct transcriptional regulation during early arterial development
  • 2017
  • Ingår i: Development. - : COMPANY OF BIOLOGISTS LTD. - 0950-1991 .- 1477-9129. ; 144:14, s. 2629-2639
  • Tidskriftsartikel (refereegranskat)abstract
    • Arterial specification and differentiation are influenced by a number of regulatory pathways. While it is known that the Vegfa-Notch cascade plays a central role, the transcriptional hierarchy controlling arterial specification has not been fully delineated. To elucidate the direct transcriptional regulators of Notch receptor expression in arterial endothelial cells, we used histone signatures, DNaseI hypersensitivity and ChIP-seq data to identify enhancers for the human NOTCH1 and zebrafish notch1b genes. These enhancerswere able to direct arterial endothelial cell-restricted expression in transgenic models. Genetic disruption of SoxF binding sites established a clear requirement for members of this group of transcription factors (SOX7, SOX17 and SOX18) to drive the activity of these enhancers in vivo. Endogenous deletion of the notch1b enhancer led to a significant loss of arterial connections to the dorsal aorta in Notch pathway-deficient zebrafish. Loss of SoxF function revealed that these factors are necessary for NOTCH1 and notch1b enhancer activity and for correct endogenous transcription of these genes. These findings position SoxF transcription factors directly upstream of Notch receptor expression during the acquisition of arterial identity in vertebrates.
  •  
3.
  • Flink, Anne E., et al. (författare)
  • Past ice flow in Wahlenbergfjorden and its implications for late Quaternary ice sheet dynamics in northeastern Svalbard
  • 2017
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 163, s. 162-179
  • Tidskriftsartikel (refereegranskat)abstract
    • Wahlenbergfjorden is a fjord situated in the western part of Nordaustlandet in northern Svalbard. It leads into the 400 m deep Hinlopen Strait located between Nordaustlandet and Spitsbergen. High-resolution multibeam bathymetric and sub-bottom data, as well as sediment cores are used to study the past extent and dynamics of glaciers in Wahlenbergfjorden and western Nordaustlandet. The submarine landform assemblage in Wahlenbergfjorden consists of landforms characteristic of subglacial, ice marginal and proglacial conditions. Glacial lineations indicate that Wahlenbergfjorden was occupied by streaming ice during the LGM and most likely acted as an ice stream onset zone. Westward ice flow in the fjord merged with the ice stream in Hinlopen Strait. Absence of ice recessional landforms in outer Wahlenbergfjorden suggests relatively fast deglaciation, possibly by flotation of the glacier front in the deeper parts of the fjord. The inner part of Wahlenbergfjorden and Palanderbukta are characterized by De Geer moraines, indicating episodic retreat of a grounded glacier front. In Palanderbukta, longer still stands of the glacier terminus resulted in the formation of larger terminal moraine ridges. The inner part of Wahlenbergfjorden was deglaciated prior to 11.3 +/- 55 Cal. ka BP. The submarine landform assemblages in front of Bodleybreen, Etonbreen, Idunbreen, Frazerbreen and Aldousbreen confirm that these glaciers have surged at least once during the Holocene.
  •  
4.
  • Jakobsson, Martin, et al. (författare)
  • The Holocene retreat dynamics and stability of Petermann Glacier in northwest Greenland
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Submarine glacial landforms in fjords are imprints of the dynamic behaviour of marine-terminating glaciers and are informative about their most recent retreat phase. Here we use detailed multibeam bathymetry to map glacial landforms in Petermann Fjord and Nares Strait, northwestern Greenland. A large grounding-zone wedge (GZW) demonstrates that Petermann Glacier stabilised at the fjord mouth for a considerable time, likely buttressed by an ice shelf. This stability was followed by successive backstepping of the ice margin down the GZW's retrograde backslope forming small retreat ridges to 680 m current depth (similar to 730-800 m palaeodepth). Iceberg ploughmarks occurring somewhat deeper show that thick, grounded ice persisted to these water depths before final breakup occurred. The palaeodepth limit of the recessional moraines is consistent with final collapse driven by marine ice cliff instability (MICI) with retreat to the next stable position located underneath the present Petermann ice tongue, where the seafloor is unmapped.
  •  
5.
  • Lomac-MacNair, Kate, et al. (författare)
  • Seal Occurrence and Habitat Use during Summer in Petermann Fjord, Northwestern Greenland
  • 2018
  • Ingår i: Arctic. - : The Arctic Institute of North America. - 0004-0843 .- 1923-1245. ; 71:3, s. 334-348
  • Tidskriftsartikel (refereegranskat)abstract
    • Ice-associated seals are considered especially susceptible and are potentially the first to modify distribution and habitat use in response to physical changes associated with the changing climate. Petermann Glacier, part of a unique ice-tongue fjord environment in a rarely studied region of northwestern Greenland, lost substantial sections of its ice tongue during major 2010 and 2012 calving events. As a result, changes in seal habitat may have occurred. Seal occurrence and distribution data were collected in Petermann Fjord and adjacent Nares Strait region over 27 days (2 to 28 August) during the multidisciplinary scientific Petermann 2015 Expedition on the icebreaker Oden. During 239.4 hours of dedicated observation effort, a total of 312 individuals were recorded, representing four species: bearded seal (Erignathus barbatus), hooded seal (Crystophora cristata), harp seal (Pagophilus groenlandicus), and ringed seal (Pusa hispida). Ringed seals were recorded significantly more than the other species (chi(2) = 347.4, df = 3, p < 0.001, n = 307). We found significant differences between species in haul-out (resting on ice) behavior (chi(2) = 133.1, df = 3, p < 0.001, n = 307). Bearded seals were more frequently hauled out (73.1% n = 49), whereas ringed seals were almost exclusively in water (93.9%, n = 200). Differences in average depth and ice coverage where species occurred were also significant: harp seals and bearded seals were found in deeper water and areas of greater ice coverage (harp seals: 663 +/- 366 m and 65 +/- 14% ice cover; bearded seals: 598 +/- 259 m and 50 +/- 21% ice cover), while hooded seals and ringed seals were found in shallower water with lower ice coverage (hooded seals: 490 +/- 163 m and 38 +/- 19% ice cover; ringed seals: 496 +/- 235 m, and 21 +/- 20% ice cover). Our study provides an initial look at how High Arctic seals use the rapidly changing Petermann Fjord and how physical variables influence their distribution in one of the few remaining ice-tongue fjord environments.
  •  
6.
  • Reilly, Brendan T., et al. (författare)
  • Holocene break-up and reestablishment of the Petermann Ice Tongue, Northwest Greenland
  • 2019
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 218, s. 322-342
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the last decade, two major calving events of the Petermann Ice Tongue in Northwest Greenland have led to speculation on its future stability and contribution to further Greenland Ice Sheet mass loss. However, it has been unclear if these events are anomalous or typical within the context of limited historical observations. We extend the historical record of the floating ice tongue using the stratigraphy of Petermann Fjord sediments to provide a longer-term perspective. Computed tomography (CT) scans, X-Ray Fluorescence (XRF) scans, Ice-Rafted Debris (IRD) counts, and the magnetic properties of specific particle size fractions constrain changes in depositional processes and sediment sources at our core sites, allowing for reconstructions of past behavior of the Petermann Ice Tongue. Radiocarbon dating of foraminifera, Pb-210, and paleomagnetic secular variation (PSV) provide age control and help to address uncertainties in radiocarbon reservoir ages. A floating ice tongue in Petermann Fjord formed in late glacial time as Petermann Glacier retreated from an advanced grounded position. This paleo-ice tongue broke-up during the early Holocene when high northern latitude summer insolation was higher than present. After gradual regrowth of the ice tongue associated with regional cooling, the ice tongue reached its historical extent only within the last millennium. Little or no ice tongue was present for nearly 5000 years during the middle Holocene, when decadal mean regional temperatures are estimated to be 0.8-2.9 degrees C higher than preindustrial (1750 CE) and seasonal sea-ice in the Lincoln Sea was reduced. This pre-historical behavior shows that recent anthropogenic warming may already be in the range of ice tongue instability and future projected warming increases the risk of ice tongue break-up by the mid-21st Century.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy