SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Hultquist Anne)) srt2:(2001-2004)"

Sökning: (WFRF:(Hultquist Anne)) > (2001-2004)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Guzhova, Irina, et al. (författare)
  • Interferon-gamma cooperates with retinoic acid and phorbol ester to induce differentiation and growth inhibition of human neuroblastoma cells
  • 2001
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 94:1, s. 97-108
  • Tidskriftsartikel (refereegranskat)abstract
    • The prognosis of patients with advanced stages of neuroblastoma with N-myc amplification remains poor despite escalated therapy, a situation that has called for alternative therapeutic approaches. Neuroblastoma cells, which represent immature peripheral neuronal cells, treated with certain physiologic and nonphysiologic agents such as retinoic acid (RA), phorbol esters and interferons (IFN) in vitro undergo cellular differentiation and stop to divide, a process that mimics normal neuronal development. Such "differentiation therapy" using RA after autologous bone marrow transplantation has recently given encouraging results in neuroblastoma patients with advanced disease. Considering approaches for improved differentiation therapy, we investigated possible synergistic effects of combining agents known to influence neuroblastoma growth and differentiation in vitro. Our results show that combined treatment with IFN-gamma and RA or the phorbol ester 12-O-tetradecanoyl-phorbol acetate (TPA) had synergistic or enhancing effects on morphologic differentiation and neurite outgrowth in 5 of 5 neuroblastoma cell lines, 3 of which expressed very high levels of N-myc mRNA due to N-myc amplification. The combinations RA+IFN-gamma or TPA+IFN-gamma also enhanced induced growth inhibition in all 5 cell lines, in several cases resulting in complete growth arrest under conditions where cells stimulated with either agent alone continued to grow. The phenotypic effects of the combined RA+IFN-gamma or TPA+IFN-gamma treatments were in most, but not all, investigated cases accompanied by moderate reductions in N-myc expression, suggesting that the cooperative signals may counteract N-Myc activity at several levels. The cooperativity between IFN-gamma and other differentiation signals may be relevant for approaches to improve the therapy for high-risk neuroblastoma with N-myc-amplification.
  •  
2.
  • Hultquist, Anne (författare)
  • Regulation and function of the Mad/Max/Myc network during neuronal and hematopoietic differentiation
  • 2001
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The Mad/Max/Myc transcription factor network takes part in the control of vital cellular functions such as growth, proliferation, differentiation and apoptosis. Dimerization with the protein Max is necessary for the Myc-family of oncoproteins and their antagonists, the Mad-family proteins, to regulate target genes and carry out their intended functions. Myc functions as a positive regulator of proliferation, antagonized by the growth inhibitory Mad-proteins that potentially functions as tumor supprerssors. Deregulated Myc expression is found in a variety of tumors and signals negatively regulating Myc expression and/or activity could therefore be of potential use in treating tumors with deregulated Myc.Our aim was to therefore to investigate possible negative effects on Myc expression and activity by growth inhibitory cytokines and by the Myc antagonists, the Mad-family proteins.Two different cellular model systems of neuronal and hematopoietic origin have been utilized for these studies.Our results show that Mad1 is upregulated during induced neuronal differentiation of SH-SY5Y cells. Further, the growth inhibitory cytokine interferon-g (IFN-g) was shown to cooperate with retinoic acid (RA) and the phorbol ester TPA in inducing growth arrest and differentiation in N-myc amplified neuroblastoma cell lines. In contrast to treatment with either agent alone, the combined treatment of TPA+IFN-g and RA+IFN-g led to upregulation of Mad1 and to downregulation of N-Myc, respectively, thus correlating with the enhanced growth inhibition and differentiation observed after combination treatment. Ectopic expression of an inducible Mad1 in monoblastic U-937 cells led to growth inhibition but did not lead to differentiation or enhancement of differentiation induced by RA, vitamin D3 or TPA. In v-Myc transformed U-937 cells Mad1 expression reestablished the TPA-induced G1 cell cycle arrest, but did not restore differentiation, blocked by v-Myc. The growth inhibitory cytokine TGF-b was found to induce Mad1 expression and Mad1:Max complex formation in v-Myc transformed U-937 cells correlating with reduced Myc activity and G1 arrest. In conclusion, our results show that the Myc-antagonist Mad1 is upregulated by growth inhibitory cytokines and/or differentiation signals in neuronal and hematopoietic cells and that enforced Mad1 expression in hematopoietic cells results in growth inhibition and increased sensitivity to anti-proliferative cytokines. Mad1 and cytokine-induced signals therefore seem to cooperate in counteracting Myc activity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy