SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Kanaki Kalliopi)) srt2:(2012)"

Sökning: (WFRF:(Kanaki Kalliopi)) > (2012)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abelev, Betty, et al. (författare)
  • Measurement of prompt J/psi and beauty hadron production cross sections at mid-rapidity in pp collisions at root s=7 TeV
  • 2012
  • Ingår i: Journal of High Energy Physics. - 1029-8479. ; :11
  • Tidskriftsartikel (refereegranskat)abstract
    • The ALICE experiment at the LHC has studied J/psi production at mid-rapidity in pp collisions at root s = 7 TeV through its electron pair decay on a data sample corresponding to an integrated luminosity L-int = 5.6 nb(-1). The fraction of J/psi from the decay of long-lived beauty hadrons was determined for J/psi candidates with transverse momentum p(t) > 1,3 GeV/c and rapidity vertical bar y vertical bar < 0.9. The cross section for prompt J/psi mesons, i.e. directly produced J/psi and prompt decays of heavier charmonium states such as the psi(2S) and chi(c) resonances, is sigma(prompt J/psi) (p(t) > 1.3 GeV/c, vertical bar y vertical bar < 0.9) = 8.3 +/- 0.8(stat.) +/- 1.1 (syst.)(-1.4)(+1.5) (syst. pol.) mu b. The cross section for the production of b-hadrons decaying to J/psi with p(t) > 1.3 GeV/c and vertical bar y vertical bar < 0.9 is a sigma(J/psi <- hB) (p(t) > 1.3 GeV/c, vertical bar y vertical bar < 0.9) = 1.46 +/- 0.38 (stat.)(-0.32)(+0.26) (syst.) mu b. The results are compared to QCD model predictions. The shape of the p(t) and y distributions of b-quarks predicted by perturbative QCD model calculations are used to extrapolate the measured cross section to derive the b (b) over bar pair total cross section and d sigma/dy at mid-rapidity.
  •  
2.
  • Abelev, Betty, et al. (författare)
  • Underlying Event measurements in pp collisions at root s=0.9 and 7 TeV with the ALICE experiment at the LHC
  • 2012
  • Ingår i: Journal of High Energy Physics. - 1029-8479. ; :7
  • Tidskriftsartikel (refereegranskat)abstract
    • We present measurements of Underlying Event observables in pp collisions at root s = 0 : 9 and 7 TeV. The analysis is performed as a function of the highest charged-particle transverse momentum p(T),L-T in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different p(T) thresholds: 0.15, 0.5 and 1.0 GeV/c. In the Transverse region we observe an increase in the multiplicity of a factor 2-3 between the lower and higher collision energies, depending on the track p(T) threshold considered. Data are compared to PYTHIA 6.4, PYTHIA 8.1 and PHOJET. On average, all models considered underestimate the multiplicity and summed p(T) in the Transverse region by about 10-30%.
  •  
3.
  • Hall-Wilton, Richard, et al. (författare)
  • Detectors for the European Spallation Source
  • 2012
  • Ingår i: 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC). - 1082-3654. ; , s. 4283-4289
  • Konferensbidrag (refereegranskat)abstract
    • The European Spallation Source (ESS) in Lund, Sweden will become the world's leading neutron source for the study of materials by 2025. First neutrons will be produced in 2019. It will be a long pulse source, with an average beam power of 5 MW delivered to the target station. The pulse length will be 2.86 ms and the repetition rate 14 Hz. The ESS is presently in a design update phase, which ends in February 2013 with a Technical Design Report (TDR). Construction will subsequently start with the goal of bringing the first seven instruments into operation in 2019 at the same time as the source. The full baseline suite of 22 instruments will be brought online by 2025. These instruments present numerous challenges for detector technology in the absence of the availability of Helium-3, which is the default choice for detectors for instruments built until today. Additionally a new generation of source requires a new generation of detector technologies to fully exploit the opportunities that this source provides. This contribution presents briefly the current status of the ESS, and outlines the timeline to completion. The number of instruments and the framework for the decisions on which instruments should be built are shown. For a conjectured full instrument suite, which has been chosen for demonstration purposes for the TDR, a snapshot of the current expected detector requirements is presented. An outline as to how some of these requirements might be tackled is shown. Given that the delivery of the ESS TDR is only a few months away, this contribution reflects strongly the content of the TDR.
  •  
4.
  • Kanaki, Kalliopi, et al. (författare)
  • Statistical Energy Determination in Neutron Detector Systems for Neutron Scattering Science
  • 2012
  • Ingår i: 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC). - 1082-3654. ; , s. 162-166
  • Konferensbidrag (refereegranskat)abstract
    • This contribution evaluates the feasibility and potential of a statistical determination of the neutron energy for thermal and cold neutrons in the new generation of neutron detectors. For the European Spallation Source (ESS), sited in Lund, Sweden, which is planned to be operational in 2019, and the world's leading source for the study of materials with neutrons by 2025, novel neutron detectors represent a critical technology that needs to be developed. The discussion here is based upon B-10 based thin-film detectors for neutron scattering science; however such a development is generalisable to other converter materials and potentially relevant to applications outside of neutron scattering science.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy