SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Katsouyanni Klea)) srt2:(2020-2024) srt2:(2023)"

Sökning: (WFRF:(Katsouyanni Klea)) srt2:(2020-2024) > (2023)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cole-Hunter, Thomas, et al. (författare)
  • Long-term air pollution exposure and Parkinson's disease mortality in a large pooled European cohort : An ELAPSE study
  • 2023
  • Ingår i: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 171
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The link between exposure to ambient air pollution and mortality from cardiorespiratory diseases is well established, while evidence on neurodegenerative disorders including Parkinson’s Disease (PD) remains limited.Objective: We examined the association between long-term exposure to ambient air pollution and PD mortality in seven European cohorts.Methods: Within the project ‘Effects of Low-Level Air Pollution: A Study in Europe’ (ELAPSE), we pooled data from seven cohorts among six European countries. Annual mean residential concentrations of fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC), and ozone (O3), as well as 8 PM2.5 components (copper, iron, potassium, nickel, sulphur, silicon, vanadium, zinc), for 2010 were estimated using Europe-wide hybrid land use regression models. PD mortality was defined as underlying cause of death being either PD, secondary Parkinsonism, or dementia in PD. We applied Cox proportional hazard models to investigate the associations between air pollution and PD mortality, adjusting for potential confounders.Results: Of 271,720 cohort participants, 381 died from PD during 19.7 years of follow-up. In single-pollutant analyses, we observed positive associations between PD mortality and PM2.5 (hazard ratio per 5 µg/m3: 1.25; 95% confidence interval: 1.01–1.55), NO2 (1.13; 0.95–1.34 per 10 µg/m3), and BC (1.12; 0.94–1.34 per 0.5 × 10-5m-1), and a negative association with O3 (0.74; 0.58–0.94 per 10 µg/m3). Associations of PM2.5, NO2, and BC with PD mortality were linear without apparent lower thresholds. In two-pollutant models, associations with PM2.5 remained robust when adjusted for NO2 (1.24; 0.95–1.62) or BC (1.28; 0.96–1.71), whereas associations with NO2 or BC attenuated to null. O3 associations remained negative, but no longer statistically significant in models with PM2.5. We detected suggestive positive associations with the potassium component of PM2.5.Conclusion: Long-term exposure to PM2.5, at levels well below current EU air pollution limit values, may contribute to PD mortality.
  •  
2.
  • de Bont, Jeroen, et al. (författare)
  • Mixtures of long-term exposure to ambient air pollution, built environment and temperature and stroke incidence across Europe
  • 2023
  • Ingår i: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 179
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: The complex interplay of multiple environmental factors and cardiovascular has scarcely been studied. Within the EXPANSE project, we evaluated the association between long-term exposure to multiple environmental indices and stroke incidence across Europe.Methods: Participants from three traditional adult cohorts (Germany, Netherlands and Sweden) and four administrative cohorts (Catalonia [region Spain], Rome [city-wide], Greece and Sweden [nationwide]) were followed until incident stroke, death, migration, loss of follow-up or study end. We estimated exposures at residential addresses from different exposure domains: air pollution (nitrogen dioxide (NO2), particulate matter < 2.5 μm (PM2.5), black carbon (BC), ozone), built environment (green/blue spaces, impervious surfaces) and meteorology (seasonal mean and standard deviation of temperatures). Associations between environmental exposures and stroke were estimated in single and multiple-exposure Cox proportional hazard models, and Principal Component (PC) Analyses derived prototypes for specific exposures domains. We carried out random effects meta-analyses by cohort type.Results: In over 15 million participants, increased levels of NO2 and BC were associated with increased higher stroke incidence in both cohort types. Increased Normalized Difference Vegetation Index (NDVI) was associated with a lower stroke incidence in both cohort types, whereas an increase in impervious surface was associated with an increase in stroke incidence. The first PC of the air pollution domain (PM2.5, NO2 and BC) was associated with an increase in stroke incidence. For the built environment, higher levels of NDVI and lower levels of impervious surfaces were associated with a protective effect [%change in HR per 1 unit = −2.0 (95 %CI, −5.9;2.0) and −1.1(95 %CI, −2.0; −0.3) for traditional adult and administrative cohorts, respectively]. No clear patterns were observed for distance to blue spaces or temperature parameters.Conclusions: We observed increased HRs for stroke with exposure to PM2.5, NO2 and BC, lower levels of greenness and higher impervious surface in single and combined exposure models.
  •  
3.
  • Hvidtfeldt, Ulla Arthur, et al. (författare)
  • Multiple myeloma risk in relation to long-term air pollution exposure - A pooled analysis of four European cohorts
  • 2023
  • Ingår i: Environmental Research. - 0013-9351 .- 1096-0953. ; 239:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Air pollution is a growing concern worldwide, with significant impacts on human health. Multiple myeloma is a type of blood cancer with increasing incidence. Studies have linked air pollution exposure to various types of cancer, including leukemia and lymphoma, however, the relationship with multiple myeloma incidence has not been extensively investigated. Methods: We pooled four European cohorts (N = 234,803) and assessed the association between residential exposure to nitrogen dioxide (NO2), fine particles (PM2.5), black carbon (BC), and ozone (O3) and multiple myeloma. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. Results: During 4,415,817 person-years of follow-up (average 18.8 years), we observed 404 cases of multiple myeloma. The results of the fully adjusted linear analyses showed hazard ratios (95% confidence interval) of 0.99 (0.84, 1.16) per 10 mu g/m3 NO2, 1.04 (0.82, 1.33) per 5 mu g/m3 PM2.5, 0.99 (0.84, 1.18) per 0.5 10- 5 m-1 BCE, and 1.11 (0.87, 1.41) per 10 mu g/m3 O3. Conclusions: We did not observe an association between long-term ambient air pollution exposure and incidence of multiple myeloma.
  •  
4.
  • Rai, Masna, et al. (författare)
  • Heat-related cardiorespiratory mortality : effect modification by air pollution across 482 cities from 24 countries
  • 2023
  • Ingår i: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 174
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Evidence on the potential interactive effects of heat and ambient air pollution on cause-specific mortality is inconclusive and limited to selected locations. Objectives: We investigated the effects of heat on cardiovascular and respiratory mortality and its modification by air pollution during summer months (six consecutive hottest months) in 482 locations across 24 countries.Methods: Location-specific daily death counts and exposure data (e.g., particulate matter with diameters ≤ 2.5 µm [PM2.5]) were obtained from 2000 to 2018. We used location-specific confounder-adjusted Quasi-Poisson regression with a tensor product between air temperature and the air pollutant. We extracted heat effects at low, medium, and high levels of pollutants, defined as the 5th, 50th, and 95th percentile of the location-specific pollutant concentrations. Country-specific and overall estimates were derived using a random-effects multilevel meta-analytical model.Results: Heat was associated with increased cardiorespiratory mortality. Moreover, the heat effects were modified by elevated levels of all air pollutants in most locations, with stronger effects for respiratory than cardiovascular mortality. For example, the percent increase in respiratory mortality per increase in the 2-day average summer temperature from the 75th to the 99th percentile was 7.7% (95% Confidence Interval [CI] 7.6–7.7), 11.3% (95%CI 11.2–11.3), and 14.3% (95% CI 14.1–14.5) at low, medium, and high levels of PM2.5, respectively. Similarly, cardiovascular mortality increased by 1.6 (95%CI 1.5–1.6), 5.1 (95%CI 5.1–5.2), and 8.7 (95%CI 8.7–8.8) at low, medium, and high levels of O3, respectively.Discussion: We observed considerable modification of the heat effects on cardiovascular and respiratory mortality by elevated levels of air pollutants. Therefore, mitigation measures following the new WHO Air Quality Guidelines are crucial to enhance better health and promote sustainable development.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy