SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Krauss Jochen)) srt2:(2010-2014)"

Sökning: (WFRF:(Krauss Jochen)) > (2010-2014)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Allan, Eric, et al. (författare)
  • Interannual variation in land-use intensity enhances grassland multidiversity
  • 2014
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 111:1, s. 308-313
  • Tidskriftsartikel (refereegranskat)abstract
    • Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation.
  •  
2.
  • Hambäck, Peter, et al. (författare)
  • Allometric density responses in butterflies : the response to small and large patches by small and large species
  • 2010
  • Ingår i: Ecography. - : Blackwell. - 0906-7590 .- 1600-0587. ; 33:6, s. 1149-1156
  • Tidskriftsartikel (refereegranskat)abstract
    • Species are differentially affected by habitat fragmentation as a consequence of differences in mobility, area requirements, use of the matrix, and responses to edges. A quantitative understanding of these differences is essential not only for conservation biology but also for basic ecological theory. Here, we examine density responses by butterflies to patch size and use a quantitative theory on the scaling of population density with patch size to interpret results. Theory suggests that the density distribution of mobile species along a patch size gradient should depend on the scaling of net migration rates, whereas the density distribution of less mobile species should depend more on local growth. Using data from 11 localities in three European countries, we calculated the slope in the relationship between patch size and population density. These slopes were evaluated in relation to butterfly traits and matrix composition. As estimates of butterfly mobility we used both wing span and expert mobility rankings. The slope of the density–area relationship changed as predicted with wing span and the association of species to grasslands. Large and highly mobile species had a negative slope, similarly for grassland specialists and generalist species, and the slope matched quantitative predictions based on the scaling of net migration rates. Small and less mobile grassland specialists had a slope that was less negative than the slope of large and mobile grassland specialists, whereas the slope did not change with size for generalist species. These analyses suggest that the variability in response among butterfly species to patch size could be explained by accounting for body size/mobility and habitat associations among species. A caveat is that edge effects are not explicitly included in the model analysis, and future research should aim to combine area and edge effects in a common theoretical framework.
  •  
3.
  • Marini, Lorenzo, et al. (författare)
  • Contrasting effects of habitat area and connectivity on evenness of pollinator communities
  • 2014
  • Ingår i: Ecography. - : Wiley. - 1600-0587 .- 0906-7590. ; 37:6, s. 544-551
  • Tidskriftsartikel (refereegranskat)abstract
    • Losses of both habitat area and connectivity have been identified as important drivers of species richness declines, but little theoretical and empirical work exists that addresses the effect of fragmentation on relative commonness of highly mobile species such as pollinating insects. With a large dataset of wild bee and butterfly abundances collected across Europe, we first tested the effect of habitat area and connectivity on evenness in pollinator communities using a large array of indexes that give different weight to dominance and rarity. Second, we tested if traits related to mobility and diet breadth could explain the observed evenness patterns. We found a clear negative effect of area and a weaker, but positive effect of connectivity on evenness. Communities in small habitat fragments were mainly composed of mobile and generalist species. The higher evenness in small fragments could thereby be generated by highly mobile species that maintain local populations with frequent inter-fragment movements. Trait analysis suggested an increasing importance of dispersal over local recruitment, as we move from large to small fragments and from less to more connected fragments. Species richness and evenness were negatively correlated indicating that the two variables responded differently to habitat area and connectivity, although the mechanisms underlying the observed patterns are difficult to isolate. Even though habitat area and connectivity often decrease simultaneously due to habitat fragmentation, an interesting practical implication of the contrasting effect of the two variables is that the resulting community composition will depend on the relative strength of these two processes.
  •  
4.
  • Marini, Lorenzo, et al. (författare)
  • Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss
  • 2012
  • Ingår i: Diversity & distributions. - : Wiley. - 1366-9516 .- 1472-4642. ; 18:9, s. 898-908
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim Habitat fragmentation is a major driver of biodiversity loss but it is insufficiently known how much its effects vary among species with different life-history traits; especially in plant communities, the understanding of the role of traits related to species persistence and dispersal in determining dynamics of species communities in fragmented landscapes is still limited. The primary aim of this study was to test how plant traits related to persistence and dispersal and their interactions modify plant species vulnerability to decreasing habitat area and increasing isolation. Location Five regions distributed over four countries in Central and Northern Europe. Methods Our dataset was composed of primary data from studies on the distribution of plant communities in 300 grassland fragments in five regions. The regional datasets were consolidated by standardizing nomenclature and species life-history traits and by recalculating standardized landscape measures from the original geographical data. We assessed the responses of plant species richness to habitat area, connectivity, plant life-history traits and their interactions using linear mixed models. Results We found that the negative effect of habitat loss on plant species richness was pervasive across different regions, whereas the effect of habitat isolation on species richness was not evident. This area effect was, however, not equal for all the species, and life-history traits related to both species persistence and dispersal modified plant sensitivity to habitat loss, indicating that both landscape and local processes determined large-scale dynamics of plant communities. High competitive ability for light, annual life cycle and animal dispersal emerged as traits enabling species to cope with habitat loss. Main conclusions In highly fragmented rural landscapes in NW Europe, mitigating the spatial isolation of remaining grasslands should be accompanied by restoration measures aimed at improving habitat quality for low competitors, abiotically dispersed and perennial, clonal species.
  •  
5.
  • Öckinger, Erik, et al. (författare)
  • The landscape matrix modifies the effect of habitat fragmentation in grassland butterflies
  • 2012
  • Ingår i: Landscape Ecology. - : Springer Verlag (Germany). - 0921-2973 .- 1572-9761. ; 27:1, s. 121-131
  • Tidskriftsartikel (refereegranskat)abstract
    • The landscape matrix is suggested to influence the effect of habitat fragmentation on species richness, but the generality of this prediction has not been tested. Here, we used data from 10 independent studies on butterfly species richness, where the matrix surrounding grassland patches was dominated by either forest or arable land to test if matrix land use influenced the response of species richness to patch area and connectivity. To account for the possibility that some of the observed species use the matrix as their main or complementary habitat, we analysed the effects on total species richness and on the richness of grassland specialist and non-specialist (generalists and specialists on other habitat types) butterflies separately. Specialists and non-specialists were defined separately for each dataset. Total species richness and the richness of grassland specialist butterflies were positively related to patch area and forest cover in the matrix, and negatively to patch isolation. The strength of the species-area relationship was modified by matrix land use and had a slope that decreased with increasing forest cover in the matrix. Potential mechanisms for the weaker effect of grassland fragmentation in forest-dominated landscapes are (1) that the forest matrix is more heterogeneous and contains more resources, (2) that small grassland patches in a matrix dominated by arable land suffer more from negative edge effects or (3) that the arable matrix constitutes a stronger barrier to dispersal between populations. Regardless of the mechanisms, our results show that there are general effects of matrix land use across landscapes and regions, and that landscape management that increases matrix quality can be a complement to habitat restoration and re-creation in fragmented landscapes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy