SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Kyprianidis Konstantinos)) pers:(Kavvalos Mavroudis) pers:(Kyprianidis Konstantinos) conttype:(refereed) srt2:(2021)"

Sökning: (WFRF:(Kyprianidis Konstantinos)) pers:(Kavvalos Mavroudis) pers:(Kyprianidis Konstantinos) conttype:(refereed) > (2021)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gkoutzamanis, Vasilis G., et al. (författare)
  • Conceptual Design and Energy Storage Positioning Aspects for a Hybrid-Electric Light Aircraft
  • 2021
  • Ingår i: Journal of engineering for gas turbines and power. - : ASME International. - 0742-4795 .- 1528-8919. ; 143:9
  • Tidskriftsartikel (refereegranskat)abstract
    • This work is a feasibility study of a 19-passenger hybrid-electric aircraft, to serve the short-haul segment within the 200-600 nautical miles. Its ambition is to answer some dominating research questions, during the evaluation and design of aircraft based on alternative propulsion architectures. The potential entry into service (EIS) is foreseen beyond 2030. A literature review is performed to identify similar concepts under research and development. After the requirements' definition, the first level of conceptual design is employed. The objective of design selections is driven by the need to reduce CO2 emissions and accommodate aircraft electrification with boundary layer ingestion engines. Based on a set of assumptions, a methodology for the sizing of the hybrid-electric aircraft is described to explore the basis of the design space, incorporating a parametric analysis for the consideration of boundary layer ingestion effects. Additionally, a methodology for the energy storage positioning is provided to highlight the multidisciplinary aspects between the sizing of an aircraft, the selected architecture (series/ parallel partial hybrid), and the storage characteristics. The results show that it is not possible to fulfill the initial design requirements (600 nmi) with a fully-electric aircraft configuration, due to the farfetched battery necessities. It is also highlighted that compliance with airworthiness standards is favored by switching to hybrid-electric aircraft configurations and relaxing the design requirements (targeted range, payload, battery technology). Finally, the lower degree of hybridization (40%) is observed to have a higher energy efficiency (-12% energy consumption) compared to the higher degree of hybridization (50%) and greater CO2 reduction, with respect to the conventional configuration.
  •  
2.
  • Kavvalos, Mavroudis, et al. (författare)
  • Exploring Design Trade-Offs for Installed Parallel Hybrid Powertrain Systems
  • 2021
  • Ingår i: 2021 AIAA/IEEE Electric Aircraft Technologies Symposium, EATS 2021. - Reston, Virginia : Institute of Electrical and Electronics Engineers Inc.. - 9781624106118
  • Konferensbidrag (refereegranskat)abstract
    • The parallel hybrid (or boosted) turbofan engine alleviates the system complexity of radical electrified powertrain architectures, while also demonstrates substantial benefits in reducing specific fuel consumption. This conservative, yet promising, electrified configuration incorporates an electrical drive coupled with the engine low-pressure or gearbox fan spool. Sophisticated models for the gas turbine and the electrical drive system are developed. The former deploys a multi-point design matching scheme coupled with an installed engine performance approach, as well as an engine sizing and weight estimation tool. The latter incorporates an analytical electrical machine sizing and performance methodology. The objective of this paper is to shed light on the optimal parallel hybrid engine design, considering installed cycle performance and tight coupling of engine and electrical drive systems. The impact of installation drag components on the integrated powertrain system performance is analyzed and design trade-offs are explored. Electrical machine efficiency, propulsion system weight and installed specificfuelconsumptiondemonstrateopposingtrendswithvaryingspecificthrustfordifferent electrical drive installation positions and mechanical connections. It is shown that fan spinner-mounted electrical machine which is mechanically coupled to the low-pressure spool presents the greatest potential in terms of electrical machine efficiency and propulsion system installed performance. A 11.23% and 15.11% increase in installed specific fuel consumption at Top of Climb and Cruise, respectively, is observed for the Cruise-based optimal specific thrust variant, rendering installation effects and electrical drive considerations critical for future low-specific thrust hybrid-electric aero-engine concepts. 
  •  
3.
  • Vouros, Stavros, et al. (författare)
  • Enabling the potential of hybrid electric propulsion through lean-burn-combustion turbofans
  • 2021
  • Ingår i: Journal of the Global Power and Propulsion Society. - : Global Power and Propulsion Society. - 2515-3080. ; 5, s. 164-176
  • Tidskriftsartikel (refereegranskat)abstract
    • Hybrid-electric propulsion has emerged as a promising technology to mitigate the adverse environmental impact of civil aviation. Boosting conventional gas turbines with electric power improves mission performance and operability. In this work the impact of electrification on pollutant emissions and direct operating cost of geared turbofan configurations is evaluated for an 150-passenger aircraft. A baseline two-and-a-half-shaft geared turbofan, representative of year 2035 entry-into-service technology, is employed. Parallel hybridization is implemented through coupling a battery-powered electric motor to the engine low-speed shaft. A multidisciplinary design space exploration framework is employed comprising modelling methods for multi-point engine design, aircraft sizing, performance and pollutant emissions, mission and economic analysis. A probabilistic approach is developed considering uncertainties in the evaluation of direct operating cost. Sensitivities to electrical power system technology levels, as well as fuel price and emissions taxation are quantified at different time-frames. The benefits of lean direct injection are explored along short-, medium-, and long-range missions, demonstrating 32% NOx savings compared to traditional rich-burn, quick-mix, lean-burn technologies in short-range operations. The impact of electrification on the enhancement of lean direct injection benefits is investigated. For hybrid-electric powerplants, the take-off-to-cruise turbine entry temperature ratio is 2.5% lower than the baseline, extending the corresponding NOx reductions to the level of 46% in short-range missions. This work sheds light on the environmental and economic potential and limitations of a hybrid-electric propulsion concept towards a greener and sustainable civil aviation. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy