SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Legrand Catherine Professor 1965 )) srt2:(2021)"

Sökning: (WFRF:(Legrand Catherine Professor 1965 )) > (2021)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alegria Zufia, Javier, et al. (författare)
  • Seasonality of Coastal Picophytoplankton Growth, Nutrient Limitation, and Biomass Contribution
  • 2021
  • Ingår i: Frontiers in Microbiology. - Lausanne : Frontiers Media S.A.. - 1664-302X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Picophytoplankton in the Baltic Sea includes the simplest unicellular cyanoprokaryotes (Synechococcus/Cyanobium) and photosynthetic picoeukaryotes (PPE). Picophytoplankton are thought to be a key component of the phytoplankton community, but their seasonal dynamics and relationships with nutrients and temperature are largely unknown. We monitored pico- and larger phytoplankton at a coastal site in Kalmar Sound (K-Station) weekly during 2018. Among the cyanoprokaryotes, phycoerythrin-rich picocyanobacteria (PE-rich) dominated in spring and summer while phycocyanin-rich picocyanobacteria (PC-rich) dominated during autumn. PE-rich and PC-rich abundances peaked during summer (1.1 x 10(5) and 2.0 x 10(5) cells mL(-1)) while PPE reached highest abundances in spring (1.1 x 10(5) cells mL(-1)). PPE was the main contributor to the total phytoplankton biomass (up to 73%). To assess nutrient limitation, bioassays with combinations of nitrogen (NO3 or NH4) and phosphorus additions were performed. PE-rich and PC-rich growth was mainly limited by nitrogen, with a preference for NH4 at >15 degrees C. The three groups had distinct seasonal dynamics and different temperature ranges: 10 degrees C and 17-19 degrees C for PE-rich, 13-16 degrees C for PC-rich and 11-15 degrees C for PPE. We conclude that picophytoplankton contribute significantly to the carbon cycle in the coastal Baltic Sea and underscore the importance of investigating populations to assess the consequences of the combination of high temperature and NH4 in a future climate.
  •  
2.
  • Mattsson, Lina, et al. (författare)
  • Functional Diversity Facilitates Stability Under Environmental Changes in an Outdoor Microalgal Cultivation System
  • 2021
  • Ingår i: Frontiers in Bioengineering and Biotechnology. - : Frontiers Media S.A.. - 2296-4185. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Functionally uniform monocultures have remained the paradigm in microalgal cultivation despite the apparent challenges to avoid invasions by other microorganisms. A mixed microbial consortium approach has the potential to optimize and maintain biomass production despite of seasonal changes and to be more resilient toward contaminations. Here we present a 3-year outdoor production of mixed consortia of locally adapted microalgae and bacteria in cold temperate latitude. Microalgal consortia were cultivated in flat panel photobioreactors using brackish Baltic Sea water and CO2 from a cement factory (Degerhamn, Cementa AB, Heidelberg Cement Group) as a sustainable CO2 source. To evaluate the ability of the microbial consortia to maintain stable biomass production while exposed to seasonal changes in both light and temperature, we tracked changes in the microbial community using molecular methods (16S and 18S rDNA amplicon sequencing) and monitored the biomass production and quality (lipid, protein, and carbohydrate content) over 3 years. Despite changes in environmental conditions, the mixed consortia maintained stable biomass production by alternating between two different predominant green microalgae (Monoraphidium and Mychonastes) with complementary tolerance to temperature. The bacterial population was few taxa co-occured over time and the composition did not have any connection to the shifts in microalgal taxa. We propose that a locally adapted and mixed microalgal consortia, with complementary traits, can be useful for optimizing yield of commercial scale microalgal cultivation.
  •  
3.
  • Sörenson, Eva, 1979-, et al. (författare)
  • Temperature Stress Induces Shift From Co-Existence to Competition for Organic Carbon in Microalgae-Bacterial Photobioreactor Community : Enabling Continuous Production of Microalgal Biomass
  • 2021
  • Ingår i: Frontiers in Microbiology. - : Frontiers. - 1664-302X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • To better predict the consequences of environmental change on aquatic microbial ecosystems it is important to understand what enables community resilience. The mechanisms by which a microbial community maintain its overall function, for example, the cycling of carbon, when exposed to a stressor, can be explored by considering three concepts: biotic interactions, functional adaptations, and community structure. Interactions between species are traditionally considered as, e.g., mutualistic, parasitic, or neutral but are here broadly defined as either coexistence or competition, while functions relate to their metabolism (e.g., autotrophy or heterotrophy) and roles in ecosystem functioning (e.g., oxygen production, organic matter degradation). The term structure here align with species richness and diversity, where a more diverse community is though to exhibit a broader functional capacity than a less diverse community. These concepts have here been combined with ecological theories commonly used in resilience studies, i.e., adaptive cycles, panarchy, and cross-scale resilience, that describe how the status and behavior at one trophic level impact that of surrounding levels. This allows us to explore the resilience of a marine microbial community, cultivated in an outdoor photobioreactor, when exposed to a naturally occurring seasonal stress. The culture was monitored for 6weeks during which it was exposed to two different temperature regimes (21 ± 2 and 11 ± 1°C). Samples were taken for metatranscriptomic analysis, in order to assess the regulation of carbon uptake and utilization, and for amplicon (18S and 16S rRNA gene) sequencing, to characterize the community structure of both autotrophs (dominated by the green microalgae Mychonastes) and heterotrophs (associated bacterioplankton). Differential gene expression analyses suggested that community function at warm temperatures was based on concomitant utilization of inorganic and organic carbon assigned to autotrophs and heterotrophs, while at colder temperatures, the uptake of organic carbon was performed primarily by autotrophs. Upon the shift from high to low temperature, community interactions shifted from coexistence to competition for organic carbon. Network analysis indicated that the community structure showed opposite trends for autotrophs and heterotrophs in having either high or low diversity. Despite an abrupt change of temperature, the microbial community as a whole responded in a way that maintained the overall level of diversity and function within and across autotrophic and heterotrophic levels. This is in line with cross-scale resilience theory describing how ecosystems may balance functional overlaps within and functional redundancy between levels in order to be resilient to environmental change (such as temperature).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy