SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Lindblad Toh Kerstin)) srt2:(2005-2009)"

Sökning: (WFRF:(Lindblad Toh Kerstin)) > (2005-2009)

  • Resultat 1-10 av 44
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Astrof, Sophie, et al. (författare)
  • Heart development in fibronectin-null mice is governed by a genetic modifier on chromosome four
  • 2007
  • Ingår i: Mechanisms of Development. - : Elsevier BV. - 0925-4773 .- 1872-6356. ; 124:7-8, s. 551-558
  • Tidskriftsartikel (refereegranskat)abstract
    • Absence of the fibronectin (FN) gene leads to early embryonic lethality in both 129S4 and C57BL/6J strains due to severe cardiovascular defects. However, heart development is arrested at different stages in these embryos depending on the genetic background. In the majority of 129S4 FN-null embryos, heart progenitors remain at their anterior bilateral positions and fail to fuse at the midline to form a heart tube. However, on the C57BL/6J genetic background, cardiac development progresses further and results in a centrally positioned and looped heart. To find factor(s) involved in embryonic heart formation and governing the extent of heart development in FN-null embryos in 129S4 and C57BL/6J strains, we performed genetic mapping and haplotype analyses. These analyses lead to identification of a significant linkage to a 1-Mbp interval on chromosome four. Microarray analysis and sequencing identified 21 genes in this region, including five that are differentially expressed between the strains, as potential modifiers. Since none of these genes was previously known to play a role in heart development, one or more of them is likely to be a novel modifier affecting cardiac development. Identification of the modifier would significantly enhance our understanding of the molecular underpinning of heart development and disease.
  •  
2.
  • Awano, Tomoyuki, et al. (författare)
  • Genome-wide association analysis reveals a SOD1 mutation in canine degenerative myelopathy that resembles amyotrophic lateral sclerosis
  • 2009
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 106:8, s. 2794-2799
  • Tidskriftsartikel (refereegranskat)abstract
    • Canine degenerative myelopathy (DM) is a fatal neurodegenerative disease prevalent in several dog breeds. Typically, the initial progressive upper motor neuron spastic and general proprioceptive ataxia in the pelvic limbs occurs at 8 years of age or older. If euthanasia is delayed, the clinical signs will ascend, causing flaccid tetraparesis and other lower motor neuron signs. DNA samples from 38 DM-affected Pembroke Welsh corgi cases and 17 related clinically normal controls were used for genome-wide association mapping, which produced the strongest associations with markers on CFA31 in a region containing the canine SOD1 gene. SOD1 was considered a regional candidate gene because mutations in human SOD1 can cause amyotrophic lateral sclerosis (ALS), an adult-onset fatal paralytic neurodegenerative disease with both upper and lower motor neuron involvement. The resequencing of SOD1 in normal and affected dogs revealed a G to A transition, resulting in an E40K missense mutation. Homozygosity for the A allele was associated with DM in 5 dog breeds: Pembroke Welsh corgi, Boxer, Rhodesian ridgeback, German Shepherd dog, and Chesapeake Bay retriever. Microscopic examination of spinal cords from affected dogs revealed myelin and axon loss affecting the lateral white matter and neuronal cytoplasmic inclusions that bind anti-superoxide dismutase 1 antibodies. These inclusions are similar to those seen in spinal cord sections from ALS patients with SOD1 mutations. Our findings identify canine DM to be the first recognized spontaneously occurring animal model for ALS.
  •  
3.
  • Baker, Michelle L, et al. (författare)
  • Analysis of a set of Australian northern brown bandicoot expressed sequence tags with comparison to the genome sequence of the South American grey short tailed opossum
  • 2007
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 8, s. 50-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Expressed sequence tags (ESTs) have been used for rapid gene discovery in a variety of organisms and provide a valuable resource for whole genome annotation. Although the genome of one marsupial, the opossum Monodelphis domestica, has now been sequenced, no EST datasets have been reported from any marsupial species. In this study we describe an EST dataset from the bandicoot, Isoodon macrourus, providing information on the transcriptional profile of the bandicoot thymus and the opportunity for a genome wide comparison between the bandicoot and opossum, two distantly related marsupial species. RESULTS: A set of 1319 ESTs was generated from sequencing randomly chosen clones from a bandicoot thymus cDNA library. The nucleic acid and deduced amino acid sequences were compared with sequences both in GenBank and the recently completed whole genome sequence of M. domestica. This study provides information on the transcriptional profile of the bandicoot thymus with the identification of genes involved in a broad range of activities including protein metabolism (24%), transcription and/or nucleic acid metabolism (10%), metabolism/energy pathways (9%), immunity (5%), signal transduction (5%), cell growth and maintenance (3%), transport (3%), cell cycle (0.7%) and apoptosis (0.5%) and a proportion of genes whose function is unknown (5.8%). Thirty four percent of the bandicoot ESTs found no match with annotated sequences in any of the public databases. Clustering and assembly of the 1319 bandicoot ESTs resulted in a set of 949 unique sequences of which 375 were unannotated ESTs. Of these, seventy one unannotated ESTs aligned to non-coding regions in the opossum, human, or both genomes, and were identified as strong non-coding RNA candidates. Eighty-four percent of the 949 assembled ESTs aligned with the M. domestica genome sequence indicating a high level of conservation between these two distantly related marsupials. CONCLUSION: This study is among the first reported marsupial EST datasets with a significant inter-species genome comparison between marsupials, providing a valuable resource for transcriptional analyses in marsupials and for future annotation of marsupial whole genome sequences.
  •  
4.
  •  
5.
  • Birney, Ewan, et al. (författare)
  • Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
  • 2007
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 447:7146, s. 799-816
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.
  •  
6.
  • Church, Deanna M, et al. (författare)
  • Lineage-specific biology revealed by a finished genome assembly of the mouse
  • 2009
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 7:5, s. e1000112-
  • Tidskriftsartikel (refereegranskat)abstract
    • The mouse (Mus musculus) is the premier animal model for understanding human disease and development. Here we show that a comprehensive understanding of mouse biology is only possible with the availability of a finished, high-quality genome assembly. The finished clone-based assembly of the mouse strain C57BL/6J reported here has over 175,000 fewer gaps and over 139 Mb more of novel sequence, compared with the earlier MGSCv3 draft genome assembly. In a comprehensive analysis of this revised genome sequence, we are now able to define 20,210 protein-coding genes, over a thousand more than predicted in the human genome (19,042 genes). In addition, we identified 439 long, non-protein-coding RNAs with evidence for transcribed orthologs in human. We analyzed the complex and repetitive landscape of 267 Mb of sequence that was missing or misassembled in the previously published assembly, and we provide insights into the reasons for its resistance to sequencing and assembly by whole-genome shotgun approaches. Duplicated regions within newly assembled sequence tend to be of more recent ancestry than duplicates in the published draft, correcting our initial understanding of recent evolution on the mouse lineage. These duplicates appear to be largely composed of sequence regions containing transposable elements and duplicated protein-coding genes; of these, some may be fixed in the mouse population, but at least 40% of segmentally duplicated sequences are copy number variable even among laboratory mouse strains. Mouse lineage-specific regions contain 3,767 genes drawn mainly from rapidly-changing gene families associated with reproductive functions. The finished mouse genome assembly, therefore, greatly improves our understanding of rodent-specific biology and allows the delineation of ancestral biological functions that are shared with human from derived functions that are not.
  •  
7.
  • Clamp, Michele, et al. (författare)
  • Distinguishing protein-coding and noncoding genes in the human genome
  • 2007
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 104:49, s. 19428-19433
  • Tidskriftsartikel (refereegranskat)abstract
    • Although the Human Genome Project was completed 4 years ago, the catalog of human protein-coding genes remains a matter of controversy. Current catalogs list a total of ≈24,500 putative protein-coding genes. It is broadly suspected that a large fraction of these entries are functionally meaningless ORFs present by chance in RNA transcripts, because they show no evidence of evolutionary conservation with mouse or dog. However, there is currently no scientific justification for excluding ORFs simply because they fail to show evolutionary conservation: the alternative hypothesis is that most of these ORFs are actually valid human genes that reflect gene innovation in the primate lineage or gene loss in the other lineages. Here, we reject this hypothesis by carefully analyzing the nonconserved ORFs—specifically, their properties in other primates. We show that the vast majority of these ORFs are random occurrences. The analysis yields, as a by-product, a major revision of the current human catalogs, cutting the number of protein-coding genes to ≈20,500. Specifically, it suggests that nonconserved ORFs should be added to the human gene catalog only if there is clear evidence of an encoded protein. It also provides a principled methodology for evaluating future proposed additions to the human gene catalog. Finally, the results indicate that there has been relatively little true innovation in mammalian protein-coding genes.
  •  
8.
  • Clark, Andrew G., et al. (författare)
  • Evolution of genes and genomes on the Drosophila phylogeny
  • 2007
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 450:7167, s. 203-218
  • Tidskriftsartikel (refereegranskat)abstract
    • Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.
  •  
9.
  • Drögemüller, Cord, et al. (författare)
  • A missense mutation in the SERPINH1 gene in Dachshunds with osteogenesis imperfecta
  • 2009
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 5:7, s. e1000579-
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteogenesis imperfecta (OI) is a hereditary disease occurring in humans and dogs. It is characterized by extremely fragile bones and teeth. Most human and some canine OI cases are caused by mutations in the COL1A1 and COL1A2 genes encoding the subunits of collagen I. Recently, mutations in the CRTAP and LEPRE1 genes were found to cause some rare forms of human OI. Many OI cases exist where the causative mutation has not yet been found. We investigated Dachshunds with an autosomal recessive form of OI. Genotyping only five affected dogs on the 50 k canine SNP chip allowed us to localize the causative mutation to a 5.82 Mb interval on chromosome 21 by homozygosity mapping. Haplotype analysis of five additional carriers narrowed the interval further down to 4.74 Mb. The SERPINH1 gene is located within this interval and encodes an essential chaperone involved in the correct folding of the collagen triple helix. Therefore, we considered SERPINH1 a positional and functional candidate gene and performed mutation analysis in affected and control Dachshunds. A missense mutation (c.977C>T, p.L326P) located in an evolutionary conserved domain was perfectly associated with the OI phenotype. We thus have identified a candidate causative mutation for OI in Dachshunds and identified a fifth OI gene.
  •  
10.
  • Drögemüller, Cord, et al. (författare)
  • A mutation in hairless dogs implicates FOXI3 in ectodermal development
  • 2008
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 321:5895, s. 1462-
  • Tidskriftsartikel (refereegranskat)abstract
    • Mexican and Peruvian hairless dogs and Chinese crested dogs are characterized by missing hair and teeth, a phenotype termed canine ectodermal dysplasia (CED). CED is inherited as a monogenic autosomal semidominant trait. With genomewide association analysis we mapped the CED mutation to a 102-kilo-base pair interval on chromosome 17. The associated interval contains a previously uncharacterized member of the forkhead box transcription factor family (FOXI3), which is specifically expressed in developing hair and teeth. Mutation analysis revealed a frameshift mutation within the FOXI3 coding sequence in hairless dogs. Thus, we have identified FOXI3 as a regulator of ectodermal development.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 44
Typ av publikation
tidskriftsartikel (42)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (43)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Lindblad-Toh, Kersti ... (43)
Lander, Eric S. (15)
Karlsson, Elinor K. (9)
Gnerre, Sante (7)
Wade, Claire M. (7)
Clamp, Michele (7)
visa fler...
Breen, Matthew (6)
Jaffe, David B. (6)
Zody, Michael C (6)
Miller, Webb (6)
Chang, Jean L. (6)
Kellis, Manolis (5)
Grabherr, Manfred (5)
Andersson, Leif (5)
Cuff, James (5)
Xie, Xiaohui (5)
Mauceli, Evan (4)
Haussler, David (4)
Ponting, Chris P. (4)
Biagi, Tara (4)
Graves, Tina (4)
Taylor, James (4)
Siepel, Adam (4)
Mullikin, James C. (4)
Rosenbloom, Kate (4)
Langford, Cordelia F ... (4)
Mikkelsen, Tarjei S. (4)
von Euler, Henrik (3)
Pachter, Lior (3)
Heger, Andreas (3)
Wilson, Richard K (3)
Gibbs, Richard A (3)
Baker, Michelle L (3)
Miller, Robert D (3)
Pielberg, Gerli Rose ... (3)
Kamal, Michael (3)
Kulbokas, Edward J. (3)
Margulies, Elliott H ... (3)
Green, Eric D. (3)
Hou, Minmei (3)
Holmes, Ian (3)
Kent, W. James (3)
Batzoglou, Serafim (3)
Weinstock, George M. (3)
Fulton, Robert (3)
Galibert, Francis (3)
Goodstadt, Leo (3)
Smith, Douglas R. (3)
Butler, Jonathan (3)
Kleber, Michael (3)
visa färre...
Lärosäte
Uppsala universitet (44)
Sveriges Lantbruksuniversitet (4)
Kungliga Tekniska Högskolan (2)
Umeå universitet (1)
Karolinska Institutet (1)
Språk
Engelska (44)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (11)
Medicin och hälsovetenskap (10)
Lantbruksvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy