SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Ling Charlotte)) pers:(Almgren Peter) srt2:(2005-2009)"

Sökning: (WFRF:(Ling Charlotte)) pers:(Almgren Peter) > (2005-2009)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ling, Charlotte, et al. (författare)
  • Genetic and epigenetic factors are associated with expression of respiratory chain component NDUFB6 in human skeletal muscle.
  • 2007
  • Ingår i: The Journal of clinical investigation. - 0021-9738. ; 117:11, s. 3427-35
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin resistance and type 2 diabetes are associated with decreased expression of genes that regulate oxidative phosphorylation in skeletal muscle. To determine whether this defect might be inherited or acquired, we investigated the association of genetic, epigenetic, and nongenetic factors with expression of NDUFB6, a component of the respiratory chain that is decreased in muscle from diabetic patients. Expression of NDUFB6 was influenced by age, with lower gene expression in muscle of elderly subjects. Heritability of NDUFB6 expression in muscle was estimated to be approximately 60% in twins. A polymorphism in the NDUFB6 promoter region that creates a possible DNA methylation site (rs629566, A/G) was associated with a decline in muscle NDUFB6 expression with age. Although young subjects with the rs629566 G/G genotype exhibited higher muscle NDUFB6 expression, this genotype was associated with reduced expression in elderly subjects. This was subsequently explained by the finding of increased DNA methylation in the promoter of elderly, but not young, subjects carrying the rs629566 G/G genotype. Furthermore, the degree of DNA methylation correlated negatively with muscle NDUFB6 expression, which in turn was associated with insulin sensitivity. Our results demonstrate that genetic, epigenetic, and nongenetic factors associate with NDUFB6 expression in human muscle and suggest that genetic and epigenetic factors may interact to increase age-dependent susceptibility to insulin resistance.
  •  
2.
  • Ling, Charlotte, et al. (författare)
  • Impact of the peroxisome proliferator activated receptor-gamma coactivator-1 beta (PGC-1 beta) Ala203Pro polymorphism on in vivo metabolism, PGC-1 beta expression and fibre type composition in human skeletal muscle
  • 2007
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 50:8, s. 1615-1620
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Peroxisome proliferator activated receptor-gamma coactivator-lp (PGC-1 beta, also known as PPARGCIB) expression is reduced in skeletal muscle from patients with type 2 diabetes mellitus and in elderly subjects. Ala203Pro, a common variant in the PGC-1 beta gene is associated with obesity. The aim of this study was to investigate whether the PGC-1 beta Ala203Pro polymorphism influences the age-related decline in skeletal muscle PGC-1 beta expression, in vivo metabolism and markers for muscle fibre type composition. Materials and methods The PGC-1 beta Ala203Pro polymerphism was genotyped in 110 young (age 28.0 +/- 1.9 years) and 86 elderly (age 62.4 +/- 2.0 years) twins and related to muscle PGC-1 beta expression, in vivo metabolism and markers for fibre type composition. Results Insulin-stimulated non-oxidative glucose metabolism (NOGM; p=0.025) and glycolytic flux rate (GF; p=0.026) were reduced in young Ala/Ala carriers compared with carriers of a 203Pro allele. In addition, a regression analysis, correcting for covariates, showed that the PGC-1 beta 203Pro allele was positively related to insulin-stimulated NOGM and GF in the young twins. While muscle expression of PGC-1 beta was reduced in elderly compared with young carriers of the Ala/Ala genotype (p <= 0.001), there was no significant age-related decline in PGC-1 beta expression in carriers of the 203Pro allele (p >= 0.4). However, a regression analysis, correcting for covariates, showed that only age was significantly related to muscle PGC-1 beta expression. Finally, PGC-1 beta expression correlated positively with markers for oxidative fibres in human muscle. Conclusions/interpretation This study suggests that young carriers of a PGC-1 beta 203Pro allele have enhanced insulin-stimulated glucose metabolism and may be protected against an age-related decline in PGC-1 beta expression in muscle.
  •  
3.
  • Lyssenko, Valeriya, et al. (författare)
  • Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes.
  • 2007
  • Ingår i: Journal of Clinical Investigation. - 0021-9738. ; 117:8, s. 2155-2163
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic variants in the gene encoding for transcription factor-7-like 2 (TCF7L2) have been associated with type 2 diabetes (T2D) and impaired beta cell function, but the mechanisms have remained unknown. We therefore studied prospectively the ability of common variants in TCF7L2 to predict future T2D and explored the mechanisms by which they would do this. Scandinavian subjects followed for up to 22 years were genotyped for 3 SNPs (rs7903146, rs12255372, and rs10885406) in TCF7L2, and a subset of them underwent extensive metabolic studies. Expression of TCF7L2 was related to genotype and metabolic parameters in human islets. The CT/TT genotypes of SNP rs7903146 strongly predicted future T2D in 2 independent cohorts (Swedish and Finnish). The risk T allele was associated with impaired insulin secretion, incretin effects, and enhanced rate of hepatic glucose production. TCF7L2 expression in human islets was increased 5-fold in T2D, particularly in carriers of the TT genotype. Overexpression of TCF7L2 in human islets reduced glucose-stimulated insulin secretion. In conclusion, the increased risk of T2D conferred by variants in TCF7L2 involves the enteroinsular axis, enhanced expression of the gene in islets, and impaired insulin secretion.
  •  
4.
  • Nilsson, Emma A, et al. (författare)
  • Genetic and Nongenetic Regulation of CAPN10 mRNA Expression in Skeletal Muscle.
  • 2005
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 54:10, s. 3015-3020
  • Tidskriftsartikel (refereegranskat)abstract
    • The gene encoding calpain-10 (CAPN10) has been identified as a candidate gene for type 2 diabetes. Our aim was to study the impact of genetic (heritability and polymorphisms) and nongenetic (insulin, free fatty acids, and age) factors on CAPN10 mRNA expression in skeletal muscle using two different study designs. Muscle biopsies were obtained before and after hyperinsulinemic-euglycemic clamps from 166 young and elderly monozygotic and dizygotic twins as well as from 15 subjects with normal (NGT) or impaired glucose tolerance (IGT) exposed to an Intralipid infusion. We found hereditary effects on both basal and insulin-exposed CAPN10 mRNA expression. Carriers of the type 2 diabetes–associated single nucleotide polymorphism (SNP)-43 G/G genotype had reduced CAPN10 mRNA levels compared with subjects carrying the SNP-43 A-allele. Age had no significant influence on CAPN10 mRNA levels. Insulin had no significant effect on CAPN10 mRNA levels, neither in the twins nor in the basal state of the Intralipid study. However, after a 24-h infusion of Intralipid, we noted a significant increase in CAPN10 mRNA in response to insulin in subjects with NGT but not in subjects with IGT. In conclusion, we provide evidence that mRNA expression of CAPN10 in skeletal muscle is under genetic control. Glucose-tolerant but not glucose-intolerant individuals upregulate their CAPN10 mRNA levels in response to prolonged exposure to fat.
  •  
5.
  • Parikh, Hemang, et al. (författare)
  • Molecular correlates for maximal oxygen uptake (VO2max) and type 1 fibers.
  • 2008
  • Ingår i: American Journal of Physiology: Endocrinology and Metabolism. - : American Physiological Society. - 1522-1555 .- 0193-1849. ; Apr 29, s. 1152-1159
  • Tidskriftsartikel (refereegranskat)abstract
    • Maximal oxygen uptake (VO2max) and the amount of type 1 fibers are interrelated but the underlying unifying molecular mechanisms are poorly understood. To explore these mechanisms we related gene expression profiles in skeletal muscle biopsies of 43 age-matched men from published datasets with VO2max and amount of type 1 fibers and replicated some of the findings in muscle biopsies from 154 young and elderly individuals using real-time PCR. We identified 66 probesets (genes or ESTs) positively and 83 probesets inversely correlated with VO2max and 171 probesets positively and 217 probesets inversely correlated with percentage of type 1 fibers in human skeletal muscle. Genes involved in oxidative phosphorylation (OXPHOS) showed high expression in individuals with high VO2max whereas the opposite was not the case in individuals with low VO2max. Instead, genes like AHNAK and BCL6 were associated with low VO2max. Also, expression of the OXPHOS genes NDUFB5 and ATP5C1 increased with exercise training and decreased with aging. In contrast, expression of AHNAK in skeletal muscle decreased with exercise training and increased with aging. Eleven genes (NDUFB4, COX5A, UQCRB, ATP5C1, ATP5G3, ETHE1, FABP3, ISCA1, MYST4, C9orf3 and PKIA) were positively correlated with both VO2max and percentage of type 1 fibers. VO2max closely reflects expression of OXPHOS genes, particularly of NDUFB5 and ATP5C1 in skeletal muscle suggesting good muscle fitness. In contrast, a high expression of AHNAK was associated with a low VO2max and poor muscle fitness. Key words: VO2max, Type 1 fibers, Aging.
  •  
6.
  • Rönn, Tina, et al. (författare)
  • Age influences DNA methylation and gene expression of COX7A1 in human skeletal muscle.
  • 2008
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 51:7, s. 1159-1168
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: Reduced oxidative capacity of the mitochondria in skeletal muscle has been suggested to contribute to insulin resistance and type 2 diabetes. Moreover, a set of genes influencing oxidative phosphorylation (OXPHOS) is downregulated in diabetic muscle. Here we studied whether genetic, epigenetic and non-genetic factors influence a component of the respiratory chain, COX7A1, previously shown to be downregulated in skeletal muscle from patients with type 2 diabetes. The specific aims were to: (1) evaluate the impact of genetic (single nucleotide polymorphisms [SNPs]), epigenetic (DNA methylation) and non-genetic (age) factors on the expression of COX7A1 in human skeletal muscle; and (2) investigate whether common variants in the COX7A1 gene are associated with increased risk of type 2 diabetes. METHODS: COX7A1 mRNA expression was analysed in muscle biopsies from young (n = 110) and elderly (n = 86) non-diabetic twins and related to measures of in vivo metabolism. Genetic variants (three SNPs) from the COX7A1 locus were genotyped in the twins and in two independent type 2 diabetes case-control cohorts (n = 1466 and 6380, respectively). DNA methylation of the COX7A1 promoter was analysed in a subset of twins (ten young, ten elderly) using bisulphite sequencing. RESULTS: While DNA methylation of the COX7A1 promoter was increased in muscle from elderly compared with young twins (19.9 +/- 8.3% vs 1.8 +/- 2.7%; p = 0.035), the opposite was found for COX7A1 mRNA expression (elderly 1.00 +/- 0.05 vs young 1.68 +/- 0.06; p = 0.0005). The heritability of COX7A1 expression was estimated to be 50% in young and 72% in elderly twins. One of the polymorphisms investigated, rs753420, influenced basal COX7A1 expression in muscle of young (p = 0.0001) but not of elderly twins. The transcript level of COX7A1 was associated with increased in vivo glucose uptake and [Formula: see text] (p = 0.009 and p = 0.001, respectively). We did not observe any genetic association between COX7A1 polymorphisms and type 2 diabetes after correcting for multiple testing. CONCLUSIONS/INTERPRETATION: Our results provide further evidence for age as a factor influencing DNA methylation and expression of OXPHOS genes, and thereby in vivo metabolism.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy