SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Martínez M)) hsvcat:2 srt2:(2020-2024)"

Sökning: (WFRF:(Martínez M)) hsvcat:2 > (2020-2024)

  • Resultat 1-10 av 48
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
3.
  • Jacobsson, Jesper, 1984-, et al. (författare)
  • An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles
  • 2022
  • Ingår i: Nature Energy. - : Springer Nature. - 2058-7546. ; 7:1, s. 107-115
  • Tidskriftsartikel (refereegranskat)abstract
    • Large datasets are now ubiquitous as technology enables higher-throughput experiments, but rarely can a research field truly benefit from the research data generated due to inconsistent formatting, undocumented storage or improper dissemination. Here we extract all the meaningful device data from peer-reviewed papers on metal-halide perovskite solar cells published so far and make them available in a database. We collect data from over 42,400 photovoltaic devices with up to 100 parameters per device. We then develop open-source and accessible procedures to analyse the data, providing examples of insights that can be gleaned from the analysis of a large dataset. The database, graphics and analysis tools are made available to the community and will continue to evolve as an open-source initiative. This approach of extensively capturing the progress of an entire field, including sorting, interactive exploration and graphical representation of the data, will be applicable to many fields in materials science, engineering and biosciences. 
  •  
4.
  • Frischknecht, R., et al. (författare)
  • Comparison of the greenhouse gas emissions of a high-rise residential building assessed with different national LCA approaches - IEA EBC Annex 72
  • 2020
  • Ingår i: IOP Conference Series. - : IOP Publishing. ; , s. 022029-
  • Konferensbidrag (refereegranskat)abstract
    • Introduction: The international research project IEA EBC Annex 72 investigates the life cycle related environmental impacts caused by buildings. The project aims inter alia to harmonise LCA approaches on buildings. Methods: To identify major commonalities and discrepancies among national LCA approaches, reference buildings were defined to present and compare the national approaches. A residential high-rise building located in Tianjin, China, was selected as one of the reference buildings. The main construction elements are reinforced concrete shear walls, beams and floor slabs. The building has an energy reference area of 4566 m2 and an operational heating energy demand of 250 MJ/m2a. An expert team provided information on the quantities of building materials and elements required for the construction, established a BIM model and quantified the operational energy demand. Results: The greenhouse gas emissions and environmental impacts of the building were quantified using 17 country-specific national assessment methods and LCA databases. Comparisons of the results are shown on the level of building elements as well as the complete life cycle of the building. Conclusions: The results of these assessments show that the main differences lie in the LCA background data used, the scope of the assessment and the reference study period applied. Despite the variability in the greenhouse gas emissions determined with the 17 national methods, the individual results are relevant in the respective national context of the method, data, tool and benchmark used. It is important that environmental benchmarks correspond to the particular LCA approach and database of a country in which the benchmark is applied. Furthermore, the results imply to include building technologies as their contribution to the overall environmental impacts is not negligible. Grant support: The authors thank the IEA for its organizational support and the funding organizations in the participating countries for their financial support.
  •  
5.
  • Falahzadeh, A., et al. (författare)
  • A New Coastal Crawler Prototype to Expand the Ecological Monitoring Radius of OBSEA Cabled Observatory
  • 2023
  • Ingår i: Journal of Marine Science and Engineering. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of marine cabled video observatories with multiparametric environmental data collection capability is becoming relevant for ecological monitoring strategies. Their ecosystem surveying can be enforced in real time, remotely, and continuously, over consecutive days, seasons, and even years. Unfortunately, as most observatories perform such monitoring with fixed cameras, the ecological value of their data is limited to a narrow field of view, possibly not representative of the local habitat heterogeneity. Docked mobile robotic platforms could be used to extend data collection to larger, and hence more ecologically representative areas. Among the various state-of-the-art underwater robotic platforms available, benthic crawlers are excellent candidates to perform ecological monitoring tasks in combination with cabled observatories. Although they are normally used in the deep sea, their high positioning stability, low acoustic signature, and low energetic consumption, especially during stationary phases, make them suitable for coastal operations. In this paper, we present the integration of a benthic crawler into a coastal cabled observatory (OBSEA) to extend its monitoring radius and collect more ecologically representative data. The extension of the monitoring radius was obtained by remotely operating the crawler to enforce back-and-forth drives along specific transects while recording videos with the onboard cameras. The ecological relevance of the monitoring-radius extension was demonstrated by performing a visual census of the species observed with the crawler's cameras in comparison to the observatory's fixed cameras, revealing non-negligible differences. Additionally, the videos recorded from the crawler's cameras during the transects were used to demonstrate an automated photo-mosaic of the seabed for the first time on this class of vehicles. In the present work, the crawler travelled in an area of 40 m away from the OBSEA, producing an extension of the monitoring field of view (FOV), and covering an area approximately 230 times larger than OBSEA's camera. The analysis of the videos obtained from the crawler's and the observatory's cameras revealed differences in the species observed. Future implementation scenarios are also discussed in relation to mission autonomy to perform imaging across spatial heterogeneity gradients around the OBSEA.
  •  
6.
  • Backes, Claudia, et al. (författare)
  • Production and processing of graphene and related materials
  • 2020
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures. We adopt a 'hands-on' approach, providing practical details and procedures as derived from literature as well as from the authors' experience, in order to enable the reader to reproduce the results. Section I is devoted to 'bottom up' approaches, whereby individual constituents are pieced together into more complex structures. We consider graphene nanoribbons (GNRs) produced either by solution processing or by on-surface synthesis in ultra high vacuum (UHV), as well carbon nanomembranes (CNM). Production of a variety of GNRs with tailored band gaps and edge shapes is now possible. CNMs can be tuned in terms of porosity, crystallinity and electronic behaviour. Section II covers 'top down' techniques. These rely on breaking down of a layered precursor, in the graphene case usually natural crystals like graphite or artificially synthesized materials, such as highly oriented pyrolythic graphite, monolayers or few layers (FL) flakes. The main focus of this section is on various exfoliation techniques in a liquid media, either intercalation or liquid phase exfoliation (LPE). The choice of precursor, exfoliation method, medium as well as the control of parameters such as time or temperature are crucial. A definite choice of parameters and conditions yields a particular material with specific properties that makes it more suitable for a targeted application. We cover protocols for the graphitic precursors to graphene oxide (GO). This is an important material for a range of applications in biomedicine, energy storage, nanocomposites, etc. Hummers' and modified Hummers' methods are used to make GO that subsequently can be reduced to obtain reduced graphene oxide (RGO) with a variety of strategies. GO flakes are also employed to prepare three-dimensional (3d) low density structures, such as sponges, foams, hydro- or aerogels. The assembly of flakes into 3d structures can provide improved mechanical properties. Aerogels with a highly open structure, with interconnected hierarchical pores, can enhance the accessibility to the whole surface area, as relevant for a number of applications, such as energy storage. The main recipes to yield graphite intercalation compounds (GICs) are also discussed. GICs are suitable precursors for covalent functionalization of graphene, but can also be used for the synthesis of uncharged graphene in solution. Degradation of the molecules intercalated in GICs can be triggered by high temperature treatment or microwave irradiation, creating a gas pressure surge in graphite and exfoliation. Electrochemical exfoliation by applying a voltage in an electrolyte to a graphite electrode can be tuned by varying precursors, electrolytes and potential. Graphite electrodes can be either negatively or positively intercalated to obtain GICs that are subsequently exfoliated. We also discuss the materials that can be amenable to exfoliation, by employing a theoretical data-mining approach. The exfoliation of LMs usually results in a heterogeneous dispersion of flakes with different lateral size and thickness. This is a critical bottleneck for applications, and hinders the full exploitation of GRMs produced by solution processing. The establishment of procedures to control the morphological properties of exfoliated GRMs, which also need to be industrially scalable, is one of the key needs. Section III deals with the processing of flakes. (Ultra)centrifugation techniques have thus far been the most investigated to sort GRMs following ultrasonication, shear mixing, ball milling, microfluidization, and wet-jet milling. It allows sorting by size and thickness. Inks formulated from GRM dispersions can be printed using a number of processes, from inkjet to screen printing. Each technique has specific rheological requirements, as well as geometrical constraints. The solvent choice is critical, not only for the GRM stability, but also in terms of optimizing printing on different substrates, such as glass, Si, plastic, paper, etc, all with different surface energies. Chemical modifications of such substrates is also a key step. Sections IV-VII are devoted to the growth of GRMs on various substrates and their processing after growth to place them on the surface of choice for specific applications. The substrate for graphene growth is a key determinant of the nature and quality of the resultant film. The lattice mismatch between graphene and substrate influences the resulting crystallinity. Growth on insulators, such as SiO2, typically results in films with small crystallites, whereas growth on the close-packed surfaces of metals yields highly crystalline films. Section IV outlines the growth of graphene on SiC substrates. This satisfies the requirements for electronic applications, with well-defined graphene-substrate interface, low trapped impurities and no need for transfer. It also allows graphene structures and devices to be measured directly on the growth substrate. The flatness of the substrate results in graphene with minimal strain and ripples on large areas, allowing spectroscopies and surface science to be performed. We also discuss the surface engineering by intercalation of the resulting graphene, its integration with Si-wafers and the production of nanostructures with the desired shape, with no need for patterning. Section V deals with chemical vapour deposition (CVD) onto various transition metals and on insulators. Growth on Ni results in graphitized polycrystalline films. While the thickness of these films can be optimized by controlling the deposition parameters, such as the type of hydrocarbon precursor and temperature, it is difficult to attain single layer graphene (SLG) across large areas, owing to the simultaneous nucleation/growth and solution/precipitation mechanisms. The differing characteristics of polycrystalline Ni films facilitate the growth of graphitic layers at different rates, resulting in regions with differing numbers of graphitic layers. High-quality films can be grown on Cu. Cu is available in a variety of shapes and forms, such as foils, bulks, foams, thin films on other materials and powders, making it attractive for industrial production of large area graphene films. The push to use CVD graphene in applications has also triggered a research line for the direct growth on insulators. The quality of the resulting films is lower than possible to date on metals, but enough, in terms of transmittance and resistivity, for many applications as described in section V. Transfer technologies are the focus of section VI. CVD synthesis of graphene on metals and bottom up molecular approaches require SLG to be transferred to the final target substrates. To have technological impact, the advances in production of high-quality large-area CVD graphene must be commensurate with those on transfer and placement on the final substrates. This is a prerequisite for most applications, such as touch panels, anticorrosion coatings, transparent electrodes and gas sensors etc. New strategies have improved the transferred graphene quality, making CVD graphene a feasible option for CMOS foundries. Methods based on complete etching of the metal substrate in suitable etchants, typically iron chloride, ammonium persulfate, or hydrogen chloride although reliable, are time- and resource-consuming, with damage to graphene and production of metal and etchant residues. Electrochemical delamination in a low-concentration aqueous solution is an alternative. In this case metallic substrates can be reused. Dry transfer is less detrimental for the SLG quality, enabling a deterministic transfer. There is a large range of layered materials (LMs) beyond graphite. Only few of them have been already exfoliated and fully characterized. Section VII deals with the growth of some of these materials. Amongst them, h-BN, transition metal tri- and di-chalcogenides are of paramount importance. The growth of h-BN is at present considered essential for the development of graphene in (opto) electronic applications, as h-BN is ideal as capping layer or substrate. The interesting optical and electronic properties of TMDs also require the development of scalable methods for their production. Large scale growth using chemical/physical vapour deposition or thermal assisted conversion has been thus far limited to a small set, such as h-BN or some TMDs. Heterostructures could also be directly grown. Section VIII discusses advances in GRM functionalization. A broad range of organic molecules can be anchored to the sp(2) basal plane by reductive functionalization. Negatively charged graphene can be prepared in liquid phase (e.g. via intercalation chemistry or electrochemically) and can react with electrophiles. This can be achieved both in dispersion or on substrate. The functional groups of GO can be further derivatized. Graphene can also be noncovalently functionalized, in particular with polycyclic aromatic hydrocarbons that assemble on the sp(2) carbon network by pi-pi stacking. In the liquid phase, this can enhance the colloidal stability of SLG/FLG. Approaches to achieve noncovalent on-substrate functionalization are also discussed, which can chemically dope graphene. Research efforts to derivatize CNMs are also summarized, as well as novel routes to selectively address defect sites. In dispersion, edges are the most dominant defects and can be covalently modified. This enhances colloidal stability without modifying the graphene basal plane. Basal plane point defects can also be modified, passivated and healed in ultra-high vacuum. The decoration of graphene with metal nanoparticles (NPs) has also received considerable attention, as it allows to exploit synergistic effects between NPs and graphene. Decoration can be either achieved chemically or in the gas phase. All LMs,
  •  
7.
  • Gilbert, M. R., et al. (författare)
  • Perspectives on multiscale modelling and experiments to accelerate materials development for fusion
  • 2021
  • Ingår i: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115 .- 1873-4820. ; 554
  • Forskningsöversikt (refereegranskat)abstract
    • Prediction of material performance in fusion reactor environments relies on computational modelling, and will continue to do so until the first generation of fusion power plants come on line and allow long-term behaviour to be observed. In the meantime, the modelling is supported by experiments that attempt to replicate some aspects of the eventual operational conditions. In 2019, a group of leading experts met under the umbrella of the IEA to discuss the current position and ongoing challenges in modelling of fusion materials and how advanced experimental characterisation is aiding model improvement. This review draws from the discussions held during that workshop. Topics covering modelling of irradiation-induced defect production and fundamental properties, gas behaviour, clustering and segregation, defect evolution and interactions are discussed, as well as new and novel multiscale simulation approaches, and the latest effort s to link modelling to experiments through advanced observation and characterisation techniques. 
  •  
8.
  • Soust-Verdaguer, B., et al. (författare)
  • Implications of using systematic decomposition structures to organize building LCA information: A comparative analysis of national standards and guidelines- IEA EBC ANNEX 72
  • 2020
  • Ingår i: IOP Conference Series: Earth and Environmental Science. - : IOP Publishing. - 1755-1307 .- 1755-1315. ; 588:2
  • Konferensbidrag (refereegranskat)abstract
    • Introduction: The application of the Life Cycle Assessment (LCA) technique to a building requires the collection and organization of a large amount of data over its life cycle. The systematic decomposition method can be used to classify building components, elements and materials, overcome specific difficulties that are encountered when attempting to complete the life cycle inventory and increase the reliability and transparency of results. In this paper, which was developed in the context of the research project IEA EBC Annex 72, we demonstrate the implications of taking such approach and describe the results of a comparison among different national standards/guidelines that are used to conduct LCA for building decomposition. Methods: We initially identified the main characteristics of the standards/guidelines used by Annex participant countries. The “be2226” reference office building was used as a reference to apply the different national standards/guidelines related to building decomposition. It served as a basis of comparison, allowing us to identify the implications of using different systems/standards in the LCA practice, in terms of how these differences affect the LCI structures, LCA databases and the methods used to communicate results. We also analyzed the implications of integrating these standards/guidelines into Building Information Modelling (BIM) to support LCA. Results: Twelve national classification systems/ standards/guidelines for the building decomposition were compared. Differences were identified among the levels of decomposition and grouping principles, as well as the consequences of these differences that were related to the LCI organization. In addition, differences were observed among the LCA databases and the structures of the results. Conclusions: The findings of this study summarize and provide an overview of the most relevant aspects of using a standardized building decomposition structure to conduct LCA. Recommendations are formulated on the basis of these findings.
  •  
9.
  • Mangold, N., et al. (författare)
  • Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars
  • 2021
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 374:6568
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations from orbital spacecraft have shown that Jezero crater on Mars contains a prominent fan-shaped body of sedimentary rock deposited at its western margin. The Perseverance rover landed in Jezero crater in February 2021. We analyze images taken by the rover in the 3 months after landing. The fan has outcrop faces, which were invisible from orbit, that record the hydrological evolution of Jezero crater. We interpret the presence of inclined strata in these outcrops as evidence of deltas that advanced into a lake. In contrast, the uppermost fan strata are composed of boulder conglomerates, which imply deposition by episodic high-energy floods. This sedimentary succession indicates a transition from sustained hydrologic activity in a persistent lake environment to highly energetic short-duration fluvial flows.
  •  
10.
  • Martinez Serrano, Cristina, et al. (författare)
  • Intrauterine Infusion of TGF-beta 1 Prior to Insemination, Alike Seminal Plasma, Influences Endometrial Cytokine Responses but Does Not Impact the Timing of the Progression of Pre-Implantation Pig Embryo Development
  • 2021
  • Ingår i: Biology. - : MDPI. - 2079-7737. ; 10:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Simple Summary Although endometrial immune regulation in pigs during the early preimplantation period is poorly documented, particularly under conditions of embryo transfer (ET), it is recognized that seminal plasma (SP) induces molecular changes in the reproductive tract, influencing numerous reproductive functions. A principal constituent of SP is the cytokine transforming growth factor beta 1 (TGF-beta 1), which has an important role in embryo development, pregnancy establishment, and progression. The present study evaluated different intrauterine infusion treatments at estrus (40 mL of SP, porcine TGF-beta 1 in an extender, or an extender alone (control)) by mimicking an ET scenario in so-called "donor" (inseminated) and "recipient" (uninseminated) sows. We investigated the effects of these treatments on day 6 embryo development ("donors") and endometrial explants cytokine production ("donors" and "recipients"). SP infusion positively influenced embryo development compared with TGF-beta 1 or extender infusions. Infusion treatments differentially affected endometrial cytokine production, with the effects being stronger in "donors" than in "recipients." Increased knowledge of the effects of SP or some of its active components on the female immune system may help to develop strategies for increasing the reproductive efficiency for the benefit of pig ET. Seminal plasma (SP) in the female genital tract induces changes that affect multiple reproductive processes. One of the active components in SP is the transforming growth factor beta 1 (TGF-beta 1), which has major roles in embryo development and pregnancy. Embryo transfer (ET) technology is welcomed by the pig industry provided that embryo quality at embryo collection as well as the fertility and prolificacy of the recipients after the ET is increased. This study evaluated different intrauterine infusion treatments at estrus (40 mL of SP, TGF-beta 1 cytokine in the extender, or the extender alone (control)) by mimicking an ET scenario in so-called "donor" (inseminated) and "recipient" (uninseminated) sows. On day 6 (day 0-onset of estrus), all "donors" were laparotomized to determine their pregnancy status (presence and developmental stage of the embryos). In addition, endometrial explants were collected from pregnant "donors" and cyclic "recipients," incubated for 24 h, and analyzed for cytokine production. SP infusions (unlike TGF-beta 1 infusions) positively influenced the developmental stage of day 6 embryos. Infusion treatments differentially influenced the endometrial cytokine production, mainly in donors. We concluded that SP infusions prior to AI not only impacted the porcine preimplantation embryo development but also influenced the endometrial cytokine production six days after treatment, both in donors and recipients.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 48
Typ av publikation
tidskriftsartikel (36)
konferensbidrag (8)
forskningsöversikt (4)
Typ av innehåll
refereegranskat (48)
Författare/redaktör
Rodriguez-Martinez, ... (3)
Parrilla, Inmaculada (3)
Martinez, Emilio A. (3)
Li, L. (2)
Martinez, M. (2)
Zhang, X. (2)
visa fler...
Li, J. (2)
Kim, H. S. (2)
Lee, S (2)
Baylor, L (2)
Bolzonella, T (2)
Coda, S (2)
De Tommasi, G (2)
Ferreira, J (2)
Frassinetti, Lorenzo (2)
Giacomelli, L (2)
Giroud, C (2)
Gohil, P (2)
Groth, M (2)
Joffrin, E (2)
Lehnen, M (2)
Luce, T (2)
Mailloux, J (2)
Nocente, M (2)
O'Gorman, T (2)
Okabayashi, M (2)
Piovesan, P (2)
Pironti, A (2)
Pitts, R (2)
Saarelma, S (2)
Salewski, M (2)
Salmi, A (2)
Sauter, O (2)
Walker, M (2)
Wiesen, S (2)
Zerbini, M (2)
Fall, Andreas (2)
Crocetti, Roberto (2)
Aulin, Christian (2)
Johnson, T. (2)
Martinez, E (2)
Linares-Pastén, Javi ... (2)
Parsons, M (2)
Ström, Petter (2)
Aiba, N. (2)
Maggi, C (2)
Järvinen, A. (2)
Kirk, A (2)
Battini, Jean-Marc, ... (2)
Martinez-Serrano, Cr ... (2)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (13)
Uppsala universitet (9)
Chalmers tekniska högskola (9)
Linköpings universitet (8)
Lunds universitet (6)
Stockholms universitet (3)
visa fler...
RISE (3)
Malmö universitet (2)
Göteborgs universitet (1)
Umeå universitet (1)
Luleå tekniska universitet (1)
Högskolan i Halmstad (1)
Mälardalens universitet (1)
Örebro universitet (1)
Linnéuniversitetet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (48)
Forskningsämne (UKÄ/SCB)
Teknik (48)
Naturvetenskap (12)
Medicin och hälsovetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy