SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(WFRF:(Mats I)) srt2:(2020-2024)"

Search: (WFRF:(Mats I)) > (2020-2024)

  • Result 1-10 of 114
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ash, G. I., et al. (author)
  • Establishing a Global Standard for Wearable Devices in Sport and Exercise Medicine: Perspectives from Academic and Industry Stakeholders
  • 2021
  • In: Sports Medicine. - : Springer Science and Business Media LLC. - 0112-1642 .- 1179-2035. ; 51, s. 2237-2250
  • Journal article (peer-reviewed)abstract
    • Millions of consumer sport and fitness wearables (CSFWs) are used worldwide, and millions of datapoints are generated by each device. Moreover, these numbers are rapidly growing, and they contain a heterogeneity of devices, data types, and contexts for data collection. Companies and consumers would benefit from guiding standards on device quality and data formats. To address this growing need, we convened a virtual panel of industry and academic stakeholders, and this manuscript summarizes the outcomes of the discussion. Our objectives were to identify (1) key facilitators of and barriers to participation by CSFW manufacturers in guiding standards and (2) stakeholder priorities. The venues were the Yale Center for Biomedical Data Science Digital Health Monthly Seminar Series (62 participants) and the New England Chapter of the American College of Sports Medicine Annual Meeting (59 participants). In the discussion, stakeholders outlined both facilitators of (e.g., commercial return on investment in device quality, lucrative research partnerships, and transparent and multilevel evaluation of device quality) and barriers (e.g., competitive advantage conflict, lack of flexibility in previously developed devices) to participation in guiding standards. There was general agreement to adopt Keadle et al.'s standard pathway for testing devices (i.e., benchtop, laboratory, field-based, implementation) without consensus on the prioritization of these steps. Overall, there was enthusiasm not to add prescriptive or regulatory steps, but instead create a networking hub that connects companies to consumers and researchers for flexible guidance navigating the heterogeneity, multi-tiered development, dynamicity, and nebulousness of the CSFW field.
  •  
2.
  • Maes, S.L., et al. (author)
  • Environmental drivers of increased ecosystem respiration in a warming tundra
  • 2024
  • In: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 629:8010, s. 105-113
  • Journal article (peer-reviewed)abstract
    • Arctic and alpine tundra ecosystems are large reservoirs of organic carbon. Climate warming may stimulate ecosystem respiration and release carbon into the atmosphere. The magnitude and persistency of this stimulation and the environmental mechanisms that drive its variation remain uncertain. This hampers the accuracy of global land carbon–climate feedback projections. Here we synthesize 136 datasets from 56 open-top chamber in situ warming experiments located at 28 arctic and alpine tundra sites which have been running for less than 1 year up to 25 years. We show that a mean rise of 1.4 °C [confidence interval (CI) 0.9–2.0 °C] in air and 0.4 °C [CI 0.2–0.7 °C] in soil temperature results in an increase in growing season ecosystem respiration by 30% [CI 22–38%] (n = 136). Our findings indicate that the stimulation of ecosystem respiration was due to increases in both plant-related and microbial respiration (n = 9) and continued for at least 25 years (n = 136). The magnitude of the warming effects on respiration was driven by variation in warming-induced changes in local soil conditions, that is, changes in total nitrogen concentration and pH and by context-dependent spatial variation in these conditions, in particular total nitrogen concentration and the carbon:nitrogen ratio. Tundra sites with stronger nitrogen limitations and sites in which warming had stimulated plant and microbial nutrient turnover seemed particularly sensitive in their respiration response to warming. The results highlight the importance of local soil conditions and warming-induced changes therein for future climatic impacts on respiration.
  •  
3.
  • Maksimovic, M., et al. (author)
  • First observations and performance of the RPW instrument on board the Solar Orbiter mission
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Journal article (peer-reviewed)abstract
    • The Radio and Plasma Waves (RPW) instrument on the ESA Solar Orbiter mission is designed to measure in situ magnetic and electric fields and waves from the continuum up to several hundred kHz. The RPW also observes solar and heliospheric radio emissions up to 16 MHz. It was switched on and its antennae were successfully deployed two days after the launch of Solar Orbiter on February 10, 2020. Since then, the instrument has acquired enough data to make it possible to assess its performance and the electromagnetic disturbances it experiences. In this article, we assess its scientific performance and present the first RPW observations. In particular, we focus on a statistical analysis of the first observations of interplanetary dust by the instrument's Thermal Noise Receiver. We also review the electro-magnetic disturbances that RPW suffers, especially those which potential users of the instrument data should be aware of before starting their research work.
  •  
4.
  • Maksimovic, M., et al. (author)
  • The Solar Orbiter Radio and Plasma Waves (RPW) instrument
  • 2020
  • In: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 642
  • Journal article (peer-reviewed)abstract
    • The Radio and Plasma Waves (RPW) instrument on the ESA Solar Orbiter mission is described in this paper. This instrument is designed to measure in-situ magnetic and electric fields and waves from the continuous to a few hundreds of kHz. RPW will also observe solar radio emissions up to 16 MHz. The RPW instrument is of primary importance to the Solar Orbiter mission and science requirements since it is essential to answer three of the four mission overarching science objectives. In addition RPW will exchange on-board data with the other in-situ instruments in order to process algorithms for interplanetary shocks and type III langmuir waves detections.
  •  
5.
  • Rixen, C., et al. (author)
  • Winters are changing: snow effects on Arctic and alpine tundra ecosystems
  • 2022
  • In: Arctic Science. - : Canadian Science Publishing. - 2368-7460. ; 8:3, s. 572-608
  • Journal article (peer-reviewed)abstract
    • Snow is an important driver of ecosystem processes in cold biomes. Snow accumulation determines ground temperature, light conditions, and moisture availability during winter. It also affects the growing season's start and end, and plant access to moisture and nutrients. Here, we review the current knowledge of the snow cover's role for vegetation, plant-animal interactions, permafrost conditions, microbial processes, and biogeochemical cycling. We also compare studies of natural snow gradients with snow experimental manipulation studies to assess time scale difference of these approaches. The number of tundra snow studies has increased considerably in recent years, yet we still lack a comprehensive overview of how altered snow conditions will affect these ecosystems. Specifically, we found a mismatch in the timing of snowmelt when comparing studies of natural snow gradients with snow manipulations. We found that snowmelt timing achieved by snow addition and snow removal manipulations (average 7.9 days advance and 5.5 days delay, respectively) were substantially lower than the temporal variation over natural spatial gradients within a given year (mean range 56 days) or among years (mean range 32 days). Differences between snow study approaches need to be accounted for when projecting snow dynamics and their impact on ecosystems in future climates.
  •  
6.
  • Santoro, V., et al. (author)
  • HighNESS conceptual design report: Volume I
  • 2024
  • In: Journal of Neutron Research. - 1023-8166 .- 1477-2655. ; 25:3-4, s. 85-314
  • Journal article (peer-reviewed)abstract
    • The European Spallation Source, currently under construction in Lund, Sweden, is a multidisciplinary international laboratory. Once completed to full specifications, it will operate the world’s most powerful pulsed neutron source. Supported by a 3 million Euro Research and Innovation Action within the EU Horizon 2020 program, a design study (HighNESS) has been completed to develop a second neutron source located below the spallation target. Compared to the first source, designed for high cold and thermal brightness, the new source has been optimized to deliver higher intensity, and a shift to longer wavelengths in the spectral regions of cold (CN, 2–20 Å), very cold (VCN, 10–120 Å), and ultracold (UCN, >500 Å) neutrons. The second source comprises a large liquid deuterium moderator designed to produce CN and support secondary VCN and UCN sources. Various options have been explored in the proposed designs, aiming for world-leading performance in neutronics. These designs will enable the development of several new instrument concepts and facilitate the implementation of a high-sensitivity neutron-antineutron oscillation experiment (NNBAR). This document serves as the Conceptual Design Report for the HighNESS project, representing its final deliverable.
  •  
7.
  • Santoro, V., et al. (author)
  • HighNESS conceptual design report: Volume II. the NNBAR experiment.
  • 2024
  • In: Journal of Neutron Research. - 1023-8166 .- 1477-2655. ; 25:3-4, s. 315-406
  • Journal article (peer-reviewed)abstract
    • A key aim of the HighNESS project for the European Spallation Source is to enable cutting-edge particle physics experiments. This volume presents a conceptual design report for the NNBAR experiment. NNBAR would exploit a new cold lower moderator to make the first search in over thirty years for free neutrons converting to anti-neutrons. The observation of such a baryon-number-violating signature would be of fundamental significance and tackle open questions in modern physics, including the origin of the matter-antimatter asymmetry. This report shows the design of the beamline, supermirror focusing system, magnetic and radiation shielding, and anti-neutron detector necessary for the experiment. A range of simulation programs are employed to quantify the performance of the experiment and show how background can be suppressed. For a search with full background suppression, a sensitivity improvement of three orders of magnitude is expected, as compared with the previous search. Civil engineering studies for the NNBAR beamline are also shown, as is a costing model for the experiment.
  •  
8.
  • Chang, Kuang Yu, et al. (author)
  • Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions
  • 2021
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1, s. 2266-2266
  • Journal article (peer-reviewed)abstract
    • Wetland methane (CH4) emissions ([Formula: see text]) are important in global carbon budgets and climate change assessments. Currently, [Formula: see text] projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent [Formula: see text] temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that [Formula: see text] are often controlled by factors beyond temperature. Here, we evaluate the relationship between [Formula: see text] and temperature using observations from the FLUXNET-CH4 database. Measurements collected across the globe show substantial seasonal hysteresis between [Formula: see text] and temperature, suggesting larger [Formula: see text] sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH4 production are thus needed to improve global CH4 budget assessments.
  •  
9.
  • Cheregi, Otilia, et al. (author)
  • Transcriptome analysis reveals insights into adaptive responses of two marine microalgae species to Nordic seasons
  • 2023
  • In: Algal Research. - 2211-9264. ; 74
  • Journal article (peer-reviewed)abstract
    • There is an increasing interest in algae-based biomass produced outdoors in natural and industrial settings for biotechnological applications. To predict the yield and biochemical composition of the biomass, it is important to understand how the transcriptome of species and strains of interest is affected by seasonal changes. Here we studied the effects of Nordic winter and summer on the transcriptome of two phytoplankton species, namely the diatom Skeletonema marinoi (Sm) and the eustigmatophyte Nannochloropsis granulata (Ng), recently identified as potentially important for biomass production on the west coast of Sweden. Cultures were grown in photobioreactors in simulated Nordic summer and winter, and the gene expression in two phases was quantified by Illumina RNA-sequencing. Five paired comparisons were made among the four conditions. Sm was overall more responsive to seasons since 70 % of the total transcriptome (14,783 genes) showed differential expression in at least one comparison as compared to 1.6 % (1403 genes) for Ng. For both species, we observed larger differences between the seasons than between the phases of the same season. In summer phase 1, Sm cells focused on photosynthesis and polysaccharide biosynthesis. Nitrate assimilation and recycling of intracellular nitrogen for protein biosynthesis were more active in summer phase 2 and throughout winter. Lipid catabolism was upregulated in winter relative to summer to supply carbon for respiration. Ng favored lipid accumulation in summer, while in winter activated different lipid remodeling pathways as compared to Sm. To cope with winter, Ng upregulated breakdown and transport of carbohydrates for energy production. Taken together, our transcriptome data reveal insights into adaptive seasonal responses of Sm and Ng important for biotechnological applications on the west coast of Sweden, but more work is required to decipher the molecular mechanisms behind these responses.
  •  
10.
  • Frances-Herrero, E., et al. (author)
  • Bioengineering trends in female reproduction: a systematic review
  • 2022
  • In: Human Reproduction Update. - : Oxford University Press (OUP). - 1355-4786 .- 1460-2369. ; 28:6, s. 798-837
  • Journal article (peer-reviewed)abstract
    • BACKGROUND To provide the optimal milieu for implantation and fetal development, the female reproductive system must orchestrate uterine dynamics with the appropriate hormones produced by the ovaries. Mature oocytes may be fertilized in the fallopian tubes, and the resulting zygote is transported toward the uterus, where it can implant and continue developing. The cervix acts as a physical barrier to protect the fetus throughout pregnancy, and the vagina acts as a birth canal (involving uterine and cervix mechanisms) and facilitates copulation. Fertility can be compromised by pathologies that affect any of these organs or processes, and therefore, being able to accurately model them or restore their function is of paramount importance in applied and translational research. However, innate differences in human and animal model reproductive tracts, and the static nature of 2D cell/tissue culture techniques, necessitate continued research and development of dynamic and more complex in vitro platforms, ex vivo approaches and in vivo therapies to study and support reproductive biology. To meet this need, bioengineering is propelling the research on female reproduction into a new dimension through a wide range of potential applications and preclinical models, and the burgeoning number and variety of studies makes for a rapidly changing state of the field. OBJECTIVE AND RATIONALE This review aims to summarize the mounting evidence on bioengineering strategies, platforms and therapies currently available and under development in the context of female reproductive medicine, in order to further understand female reproductive biology and provide new options for fertility restoration. Specifically, techniques used in, or for, the uterus (endometrium and myometrium), ovary, fallopian tubes, cervix and vagina will be discussed. SEARCH METHODS A systematic search of full-text articles available in PubMed and Embase databases was conducted to identify relevant studies published between January 2000 and September 2021. The search terms included: bioengineering, reproduction, artificial, biomaterial, microfluidic, bioprinting, organoid, hydrogel, scaffold, uterus, endometrium, ovary, fallopian tubes, oviduct, cervix, vagina, endometriosis, adenomyosis, uterine fibroids, chlamydia, Asherman's syndrome, intrauterine adhesions, uterine polyps, polycystic ovary syndrome and primary ovarian insufficiency. Additional studies were identified by manually searching the references of the selected articles and of complementary reviews. Eligibility criteria included original, rigorous and accessible peer-reviewed work, published in English, on female reproductive bioengineering techniques in preclinical (in vitro/in vivo/ex vivo) and/or clinical testing phases. OUTCOMES Out of the 10 390 records identified, 312 studies were included for systematic review. Owing to inconsistencies in the study measurements and designs, the findings were assessed qualitatively rather than by meta-analysis. Hydrogels and scaffolds were commonly applied in various bioengineering-related studies of the female reproductive tract. Emerging technologies, such as organoids and bioprinting, offered personalized diagnoses and alternative treatment options, respectively. Promising microfluidic systems combining various bioengineering approaches have also shown translational value. WIDER IMPLICATIONS The complexity of the molecular, endocrine and tissue-level interactions regulating female reproduction present challenges for bioengineering approaches to replace female reproductive organs. However, interdisciplinary work is providing valuable insight into the physicochemical properties necessary for reproductive biological processes to occur. Defining the landscape of reproductive bioengineering technologies currently available and under development for women can provide alternative models for toxicology/drug testing, ex vivo fertility options, clinical therapies and a basis for future organ regeneration studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 114
Type of publication
journal article (99)
conference paper (12)
reports (1)
doctoral thesis (1)
research review (1)
Type of content
peer-reviewed (110)
other academic/artistic (4)
Author/Editor
Börjesson, Mats, 196 ... (10)
Alves, Dimas I (9)
Pettersson, Mats, 19 ... (9)
Machado, Renato (8)
Töpel, Mats H., 1973 (6)
Åberg, Maria A I, 19 ... (6)
show more...
Lissner, Lauren, 195 ... (6)
Jonson, Mats, 1947 (6)
Brännström, Mats, 19 ... (6)
Vu, Viet Thuy, 1977- (6)
Svensson, Mats, 1960 (6)
Nilsson, Mats (5)
af Geijerstam, Agnes (5)
Mehlig, Kirsten, 196 ... (5)
Shekhter, Robert I., ... (5)
Linder, Astrid, 1959 ... (5)
Peichl, Matthias (4)
Kugelberg, M (4)
Thomson, Robert, 196 ... (4)
Nilsson, I. (4)
Geijer, Mats, 1957 (4)
Zetterberg, Madelein ... (4)
Rosengren, Annika, 1 ... (4)
Aharony, A. (4)
Entin-Wohlman, O. (4)
André, Mats (4)
Pinder, Matthew I. M ... (4)
Lundström, Mats (4)
Behndig, Anders (4)
Bachl, N. (4)
Cooper, E J (3)
Papadopoulou, T. (3)
Wagner, R (3)
Aurela, M. (3)
Lohila, A. (3)
Laurila, T. (3)
Björkman, Mats (3)
Kuhn, Hans-Georg, 19 ... (3)
Remberger, Mats (3)
Khotyaintsev, Yuri V ... (3)
Ekström, Mikael (3)
Åkerberg, Johan (3)
Mammarella, I. (3)
Gedde-Dahl, T. (3)
Le Contel, O. (3)
Palm, Bruna (3)
Muller, Cristian (3)
Kourtchenko, Olga, 1 ... (3)
Ekblom Bak, Elin, 19 ... (3)
Björk, Robert G., 19 ... (3)
show less...
University
University of Gothenburg (53)
Uppsala University (19)
Lund University (16)
Karolinska Institutet (11)
Stockholm University (10)
Chalmers University of Technology (10)
show more...
Blekinge Institute of Technology (10)
Swedish University of Agricultural Sciences (10)
Umeå University (9)
Royal Institute of Technology (6)
Linköping University (5)
Luleå University of Technology (3)
Mälardalen University (3)
The Swedish School of Sport and Health Sciences (3)
VTI - The Swedish National Road and Transport Research Institute (3)
Swedish Museum of Natural History (2)
Jönköping University (1)
Södertörn University (1)
Linnaeus University (1)
RISE (1)
Karlstad University (1)
show less...
Language
English (114)
Research subject (UKÄ/SCB)
Natural sciences (46)
Medical and Health Sciences (41)
Engineering and Technology (27)
Agricultural Sciences (3)
Social Sciences (1)
Humanities (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view