SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Molau Ulf)) srt2:(2015-2019) srt2:(2017)"

Sökning: (WFRF:(Molau Ulf)) srt2:(2015-2019) > (2017)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alatalo, J. M., et al. (författare)
  • Responses of lichen communities to 18 years of natural and experimental warming
  • 2017
  • Ingår i: Annals of Botany. - : Oxford University Press (OUP). - 0305-7364 .- 1095-8290. ; 120:1, s. 159-170
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Aims Climate change is expected to have major impacts on high alpine and arctic ecosystems in the future, but empirical data on the impact of long-term warming on lichen diversity and richness are sparse. This study report the effects of 18 years of ambient and experimental warming on lichens and vascular plant cover in two alpine plant communities, a dry heath with sparse canopy cover (54 %) and a mesic meadow with a more developed (67 %) canopy cover, in sub-arctic Sweden. Methods The effects of long-term passive experimental warming using open top chambers (OTCs) on lichens and total vascular plant cover, and the impact of plant cover on lichen community parameters, were analysed. Key Results Between 1993 and 2013, mean annual temperature increased about 2 degrees C. Both site and experimental warming had a significant effect on cover, species richness, effective number of species evenness of lichens, and total plant canopy cover. Lichen cover increased in the heath under ambient conditions, and remained more stable under experimental warming. The negative effect on species richness and effective number of species was driven by a decrease in lichens under experimental warming in the meadow. Lichen cover, species richness, effective number of species evenness were negatively correlated with plant canopy cover. There was a significant negative impact on one species and a non-significant tendency of lower abundance of the most common species in response to experimental warming. Conclusions The results from the long-term warming study imply that arctic and high alpine lichen communities are likely to be negatively affected by climate change and an increase in plant canopy cover. Both biotic and abiotic factors are thus important for future impacts of climate change on lichens.
  •  
2.
  • Baruah, G., et al. (författare)
  • Community and species-specific responses of plant traits to 23 years of experimental warming across subarctic tundra plant communities
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • To improve understanding of how global warming may affect competitive interactions among plants, information on the responses of plant functional traits across species to long-term warming is needed. Here we report the effect of 23 years of experimental warming on plant traits across four different alpine subarctic plant communities: tussock tundra, Dryas heath, dry heath and wet meadow. Open-top chambers (OTCs) were used to passively warm the vegetation by 1.5-3 degrees C. Changes in leaf width, leaf length and plant height of 22 vascular plant species were measured. Long-term warming significantly affected all plant traits. Overall, plant species were taller, with longer and wider leaves, compared with control plots, indicating an increase in biomass in warmed plots, with 13 species having significant increases in at least one trait and only three species having negative responses. The response varied among species and plant community in which the species was sampled, indicating community-warming interactions. Thus, plant trait responses are both species- and community-specific. Importantly, we show that there is likely to be great variation between plant species in their ability to maintain positive growth responses over the longer term, which might cause shifts in their relative competitive ability.
  •  
3.
  • Prevey, J., et al. (författare)
  • Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes
  • 2017
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 23:7, s. 2660-2671
  • Tidskriftsartikel (refereegranskat)abstract
    • Warmer temperatures are accelerating the phenology of organisms around the world. Temperature sensitivity of phenology might be greater in colder, higher latitude sites than in warmer regions, in part because small changes in temperature constitute greater relative changes in thermal balance at colder sites. To test this hypothesis, we examined up to 20 years of phenology data for 47 tundra plant species at 18 high-latitude sites along a climatic gradient. Across all species, the timing of leaf emergence and flowering was more sensitive to a given increase in summer temperature at colder than warmer high-latitude locations. A similar pattern was seen over time for the flowering phenology of a widespread species, Cassiope tetragona. These are among the first results highlighting differential phenological responses of plants across a climatic gradient and suggest the possibility of convergence in flowering times and therefore an increase in gene flow across latitudes as the climate warms.
  •  
4.
  • Vowles, Tage, et al. (författare)
  • Contrasting impacts of reindeer grazing in two tundra grasslands
  • 2017
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9318 .- 1748-9326. ; 12:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant communities in Arctic and alpine areas are changing due to higher temperatures and longer vegetation periods and it is uncertain how this will affect plant-herbivore dynamics. For instance, relatively fast-growing, deciduous shrub species that are the most responsive to warming may also be the most targeted by herbivores such as reindeer, giving less palatable evergreen shrubs the chance to expand. Using herbivore exclosures, we have studied how two grasslands with contrasting nutrient and moisture regimes, a dry, nutrient-poor alpine grass heath and a wet, productive low herb meadow, changed between 1995 and 2012, in grazed and ungrazed conditions. At the grass heath, evergreen low shrub abundance had more than doubled, regardless of grazer treatment, whereas at the low herb meadow, evergreen shrubs had increased only outside exclosures while deciduous tall shrubs and forbs were significantly more abundant inside exclosures. Deciduous tall shrubs were also significantly taller in exclosures. These contrasting findings suggest that the impact of herbivores is to a great deal determined by their influence on competitive interactions between plant species, and therefore depends on the underlying composition of the plant community. Consequently, as the balance in these competitive interactions is shifting due to climate warming, we conclude that the potential of herbivory to influence this balance is considerable yet highly site dependent.
  •  
5.
  • Vowles, Tage, et al. (författare)
  • Expansion of deciduous tall shrubs but not evergreen dwarf shrubs inhibited by reindeer in Scandes mountain range
  • 2017
  • Ingår i: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 105:6, s. 1547-1561
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the most palpable effects of warming in Arctic ecosystems is shrub expansion above the tree line. However, previous studies have found that reindeer can influence plant community responses to warming and inhibit shrubification of the tundra. We revisited grazed (ambient) and ungrazed study plots (exclosures), at the southern as well as the northern limits of the Swedish alpine region, to study long-term grazing effects and vegetation changes in response to increasing temperatures between 1995 and 2011, in two vegetation types (shrub heath and mountain birch forest). In the field layer at the shrub heath sites, evergreen dwarf shrubs had increased in cover from 26% to 49% but were unaffected by grazing. Deciduous dwarf and tall shrubs also showed significant, though smaller, increases over time. At the birch forest sites, the increase was similar for evergreen dwarf shrubs (20-48%) but deciduous tall shrubs did not show the same consistent increase over time as in the shrub heath. The cover and height of the shrub layer were significantly greater in exclosures at the shrub heath sites, but no significant treatment effects were found on species richness or diversity. July soil temperatures and growing season thawing degree days (TDD) were higher in exclosures at all but one site, and there was a significant negative correlation between mean shrub layer height and soil TDD at the shrub heath sites. Synthesis. This study shows that shrub expansion is occurring rapidly in the Scandes mountain range, both above and below the tree line. Tall, deciduous shrubs had benefitted significantly from grazing exclosure, both in terms of cover and height, which in turn lowered summer soil temperatures. However, the overriding vegetation shift across our sites was the striking increase in evergreen dwarf shrubs, which were not influenced by grazing. As the effects of an increase in evergreen dwarf shrubs and more recalcitrant plant litter may to some degree counteract some of the effects of an increase in deciduous tall shrubs, herbivore influence on shrub interactions is potentially of great importance for shaping arctic shrub expansion and its associated ecosystem effects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy