SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Nickel D.)) srt2:(2015-2019)"

Sökning: (WFRF:(Nickel D.)) > (2015-2019)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Went, M, et al. (författare)
  • Author Correction: Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 213-
  • Tidskriftsartikel (refereegranskat)abstract
    • The original version of this Article contained an error in the spelling of a member of the PRACTICAL Consortium, Manuela Gago-Dominguez, which was incorrectly given as Manuela Gago Dominguez. This has now been corrected in both the PDF and HTML versions of the Article. Furthermore, in the original HTML version of this Article, the order of authors within the author list was incorrect. The PRACTICAL consortium was incorrectly listed after Richard S. Houlston and should have been listed after Nora Pashayan. This error has been corrected in the HTML version of the Article; the PDF version was correct at the time of publication.
  •  
2.
  • Da Silva Filho, M. I., et al. (författare)
  • Genome-wide association study of immunoglobulin light chain amyloidosis in three patient cohorts : Comparison with myeloma
  • 2017
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 0887-6924 .- 1476-5551. ; 31:8, s. 1735-1742
  • Tidskriftsartikel (refereegranskat)abstract
    • Immunoglobulin light chain (AL) amyloidosis is characterized by tissue deposition of amyloid fibers derived from immunoglobulin light chain. AL amyloidosis and multiple myeloma (MM) originate from monoclonal gammopathy of undetermined significance. We wanted to characterize germline susceptibility to AL amyloidosis using a genome-wide association study (GWAS) on 1229 AL amyloidosis patients from Germany, UK and Italy, and 7526 healthy local controls. For comparison with MM, recent GWAS data on 3790 cases were used. For AL amyloidosis, single nucleotide polymorphisms (SNPs) at 10 loci showed evidence of an association at P<10 -5 with homogeneity of results from the 3 sample sets; some of these were previously documented to influence MM risk, including the SNP at the IRF4 binding site. In AL amyloidosis, rs9344 at the splice site of cyclin D1, promoting translocation (11;14), reached the highest significance, P=7.80 × 10 -11; the SNP was only marginally significant in MM. SNP rs79419269 close to gene SMARCD3 involved in chromatin remodeling was also significant (P=5.2 × 10 -8). These data provide evidence for common genetic susceptibility to AL amyloidosis and MM. Cyclin D1 is a more prominent driver in AL amyloidosis than in MM, but the links to aggregation of light chains need to be demonstrated.
  •  
3.
  • Johnson, D C, et al. (författare)
  • Genetic factors influencing the risk of multiple myeloma bone disease.
  • 2016
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 1476-5551 .- 0887-6924. ; 30, s. 883-888
  • Tidskriftsartikel (refereegranskat)abstract
    • A major complication of multiple myeloma (MM) is the development of osteolytic lesions, fractures and bone pain. To identify genetic variants influencing the development of MM bone disease (MBD), we analyzed MM patients of European ancestry (totalling 3774) which had been radiologically surveyed for MBD. Each patient had been genotyped for ~600 000 SNPs with genotypes for six million common variants imputed using 1000Genomes Project and UK10K as reference. We identified a locus at 8q24.12 for MBD (rs4407910, OPG/TNFRSF11B, odds ratio [OR]=1.38, P=4.09 × 10(-9)) and a promising association at 19q13.43 (rs74676832, OR=1.97, P=9.33 × 10(-7)). Our findings demonstrate that germline variation influences MBD and highlights the importance of RANK/RANKL/OPG pathway in MBD development. These findings will contribute to the development of future strategies for prevention of MBD in the early precancerous phases of MM.Leukemia accepted article preview online, 16 December 2015. doi:10.1038/leu.2015.342.
  •  
4.
  • Suliman, S., et al. (författare)
  • Nanodiamond modified copolymer scaffolds affects tumour progression of early neoplastic oral keratinocytes
  • 2016
  • Ingår i: Biomaterials. - : Elsevier. - 0142-9612 .- 1878-5905. ; 95, s. 11-21
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aimed to evaluate the tumorigenic potential of functionalising poly(LLA-co-CL) scaffolds. The copolymer scaffolds were functionalised with nanodiamonds (nDP) or with nDP and physisorbed BMP-2 (nDP-PHY) to enhance osteoinductivity. Culturing early neoplastic dysplastic keratinocytes (DOKLuc) on nDP modified scaffolds reduced significantly their subsequent sphere formation ability and decreased significantly the cells' proliferation in the supra-basal layers of in vitro 3D oral neoplastic mucosa (3D-OT) when compared to DOKLuc previously cultured on nDP-PHY scaffolds. Using an in vivo non-invasive environmentally-induced oral carcinogenesis model, nDP scaffolds were observed to reduce bioluminescence intensity of tumours formed by DOKLuc + carcinoma associated fibroblasts (CAF). nDP modification was also found to promote differentiation of DOKLuc both in vitro in 3D-OT and in vivo in xenografts formed by DOKLuc alone. The nDP-PHY scaffold had the highest number of invasive tumours formed by DOKLuc + CAF outside the scaffold area compared to the nDP and control scaffolds. In conclusion, in vitro and in vivo results presented here demonstrate that nDP modified copolymer scaffolds are able to decrease the tumorigenic potential of DOKLuc, while confirming concerns for the therapeutic use of BMP-2 for reconstruction of bone defects in oral cancer patients due to its tumour promoting capabilities.
  •  
5.
  •  
6.
  • Auffray, Charles, et al. (författare)
  • Making sense of big data in health research: Towards an EU action plan
  • 2016
  • Ingår i: Genome Medicine. - : BIOMED CENTRAL LTD. - 1756-994X. ; 8:71
  • Tidskriftsartikel (refereegranskat)abstract
    • Medicine and healthcare are undergoing profound changes. Whole-genome sequencing and high-resolution imaging technologies are key drivers of this rapid and crucial transformation. Technological innovation combined with automation and miniaturization has triggered an explosion in data production that will soon reach exabyte proportions. How are we going to deal with this exponential increase in data production? The potential of "big data" for improving health is enormous but, at the same time, we face a wide range of challenges to overcome urgently. Europe is very proud of its cultural diversity; however, exploitation of the data made available through advances in genomic medicine, imaging, and a wide range of mobile health applications or connected devices is hampered by numerous historical, technical, legal, and political barriers. European health systems and databases are diverse and fragmented. There is a lack of harmonization of data formats, processing, analysis, and data transfer, which leads to incompatibilities and lost opportunities. Legal frameworks for data sharing are evolving. Clinicians, researchers, and citizens need improved methods, tools, and training to generate, analyze, and query data effectively. Addressing these barriers will contribute to creating the European Single Market for health, which will improve health arid healthcare for all Europearis.
  •  
7.
  • Sieber, Maximilian, et al. (författare)
  • Corrosion Protection of Al/Mg Compounds by Simultaneous Plasma Electrolytic Oxidation
  • 2015
  • Ingår i: Materials Today: Proceedings, Volume 2, Supplement 1. - : Elsevier Ltd. ; , s. S149-S155
  • Konferensbidrag (refereegranskat)abstract
    • The application of Al/Mg compound materials for lightweight structures is limited by their corrosion susceptibility. The primary corrosion attack takes place at the Mg component. This may partly be caused by galvanic corrosion and partly by the insufficient formation of a natural passive layer on magnesium. Therefore, oxide coatings were produced on the co-extruded Al/Mg compounds by simultaneous plasma electrolytic oxidation (PEO). A silicate-alkaline and a silicate-phosphate-alkaline electrolyte were used for the coincident production of coatings with a thickness of several 10 microns on both the aluminum and the magnesium component. The inherent flaws of the coating (pores, cavities) allow for the infiltration with an epoxy-based sealant. The electrochemical behavior of the magnesium component covered with the oxide coatings with and without sealing was compared with reference to the unmodified surface. The surface modification (PEO w/wo sealing) significantly decreases the corrosion susceptibility of the Mg component, and thus of the compound.
  •  
8.
  •  
9.
  • Went, M, et al. (författare)
  • Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma
  • 2018
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1, s. 3707-
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have transformed our understanding of susceptibility to multiple myeloma (MM), but much of the heritability remains unexplained. We report a new GWAS, a meta-analysis with previous GWAS and a replication series, totalling 9974 MM cases and 247,556 controls of European ancestry. Collectively, these data provide evidence for six new MM risk loci, bringing the total number to 23. Integration of information from gene expression, epigenetic profiling and in situ Hi-C data for the 23 risk loci implicate disruption of developmental transcriptional regulators as a basis of MM susceptibility, compatible with altered B-cell differentiation as a key mechanism. Dysregulation of autophagy/apoptosis and cell cycle signalling feature as recurrently perturbed pathways. Our findings provide further insight into the biological basis of MM.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy