SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(O'Connell Brendan)) "

Sökning: (WFRF:(O'Connell Brendan))

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Asselbergs, Folkert W., et al. (författare)
  • Large-Scale Gene-Centric Meta-analysis across 32 Studies Identifies Multiple Lipid Loci
  • 2012
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 91:5, s. 823-838
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWASs) have identified many SNPs underlying variations in plasma-lipid levels. We explore whether additional loci associated with plasma-lipid phenotypes, such as high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), and triglycerides (TGs), can be identified by a dense gene-centric approach. Our meta-analysis of 32 studies in 66,240 individuals of European ancestry was based on the custom similar to 50,000 SNP genotyping array (the ITMAT-Broad-CARe array) covering similar to 2,000 candidate genes. SNP-lipid associations were replicated either in a cohort comprising an additional 24,736 samples or within the Global Lipid Genetic Consortium. We identified four, six, ten, and four unreported SNPs in established lipid genes for HDL-C, LDL-C, TC, and TGs, respectively. We also identified several lipid-related SNPs in previously unreported genes: DGAT2, HCAR2, GPIHBP1, PPARG, and FTO for HDL-C; SOCS3, APOH, SPTY2D1, BRCA2, and VLDLR for LDL-C; SOCS3, UGT1A1, BRCA2, UBE3B, FCGR2A, CHUK, and INSIG2 for TC; and SERPINF2, C4B, GCK, GATA4, INSR, and LPAL2 for TGs. The proportion of explained phenotypic variance in the subset of studies providing individual-level data was 9.9% for HDL-C, 9.5% for LDL-C, 10.3% for TC, and 8.0% for TGs. This large meta-analysis of lipid phenotypes with the use of a dense gene-centric approach identified multiple SNPs not previously described in established lipid genes and several previously unknown loci. The explained phenotypic variance from this approach was comparable to that from a meta-analysis of GWAS data, suggesting that a focused genotyping approach can further increase the understanding of heritability of plasma lipids.
  •  
2.
  • Chasman, Daniel I., et al. (författare)
  • Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function
  • 2012
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 21:24, s. 5329-5343
  • Tidskriftsartikel (refereegranskat)abstract
    • In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P 5.6 10(9)) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 10(4)2.2 10(7). Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in general.
  •  
3.
  • Felton, Annika M., et al. (författare)
  • Increased intake of tree forage by moose is associated with intake of crops rich in nonstructural carbohydrates
  • 2024
  • Ingår i: Ecology. - : John Wiley & Sons. - 0012-9658 .- 1939-9170.
  • Tidskriftsartikel (refereegranskat)abstract
    • Animals representing a wide range of taxonomic groups are known to select specific food combinations to achieve a nutritionally balanced diet. The nutrient balancing hypothesis suggests that, when given the opportunity, animals select foods to achieve a particular target nutrient balance, and that balancing occurs between meals and between days. For wild ruminants who inhabit landscapes dominated by human land use, nutritionally imbalanced diets can result from ingesting agricultural crops rich in starch and sugar (nonstructural carbohydrates [NCs]), which can be provided to them by people as supplementary feeds. Here, we test the nutrient balancing hypothesis by assessing potential effects that the ingestion of such crops by Alces alces (moose) may have on forage intake. We predicted that moose compensate for an imbalanced intake of excess NC by selecting tree forage with macro-nutritional content better suited for their rumen microbiome during wintertime. We applied DNA metabarcoding to identify plants in fecal and rumen content from the same moose during winter in Sweden. We found that the concentration of NC-rich crops in feces predicted the presence of Picea abies (Norway spruce) in rumen samples. The finding is consistent with the prediction that moose use tree forage as a nutritionally complementary resource to balance their intake of NC-rich foods, and that they ingested P. abies in particular (normally a forage rarely eaten by moose) because it was the most readily available tree. Our finding sheds new light on the foraging behavior of a model species in herbivore ecology, and on how habitat alterations by humans may change the behavior of wildlife.
  •  
4.
  • Ganesh, Santhi K., et al. (författare)
  • Loci influencing blood pressure identified using a cardiovascular gene-centric array
  • 2013
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 22:8, s. 1663-1678
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood pressure (BP) is a heritable determinant of risk for cardiovascular disease (CVD). To investigate genetic associations with systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP) and pulse pressure (PP), we genotyped 50 000 single-nucleotide polymorphisms (SNPs) that capture variation in 2100 candidate genes for cardiovascular phenotypes in 61 619 individuals of European ancestry from cohort studies in the USA and Europe. We identified novel associations between rs347591 and SBP (chromosome 3p25.3, in an intron of HRH1) and between rs2169137 and DBP (chromosome1q32.1 in an intron of MDM4) and between rs2014408 and SBP (chromosome 11p15 in an intron of SOX6), previously reported to be associated with MAP. We also confirmed 10 previously known loci associated with SBP, DBP, MAP or PP (ADRB1, ATP2B1, SH2B3/ATXN2, CSK, CYP17A1, FURIN, HFE, LSP1, MTHFR, SOX6) at array-wide significance (P 2.4 10(6)). We then replicated these associations in an independent set of 65 886 individuals of European ancestry. The findings from expression QTL (eQTL) analysis showed associations of SNPs in the MDM4 region with MDM4 expression. We did not find any evidence of association of the two novel SNPs in MDM4 and HRH1 with sequelae of high BP including coronary artery disease (CAD), left ventricular hypertrophy (LVH) or stroke. In summary, we identified two novel loci associated with BP and confirmed multiple previously reported associations. Our findings extend our understanding of genes involved in BP regulation, some of which may eventually provide new targets for therapeutic intervention.
  •  
5.
  • Hsieh, Yves S. Y., et al. (författare)
  • Synthesis of the bacteriocin glycopeptide sublancin 168 and S-glycosylated variants
  • 2012
  • Ingår i: Organic Letters. - : American Chemical Society (ACS). - 1523-7060 .- 1523-7052. ; 14:7, s. 1910-3
  • Tidskriftsartikel (refereegranskat)abstract
    • The synthesis of sublancin 168, a unique S-glucosylated bacteriocin antibiotic, is described. The natural product and two S-glycosylated variants were successfully prepared via native chemical ligation followed by folding. The synthetic glycopeptides were shown to possess primarily an α-helical secondary structure by CD and NMR studies.
  •  
6.
  • OʼConnell, Brendan, et al. (författare)
  • Use of Blood Biomarkers in the Assessment of Sports-Related Concussion-A Systematic Review in the Context of Their Biological Significance
  • 2018
  • Ingår i: Clinical Journal of Sports Medicine. - : Lippincott Williams & Wilkins. - 1050-642X .- 1536-3724. ; 28:6, s. 561-571
  • Forskningsöversikt (refereegranskat)abstract
    • OBJECTIVES: To critically review current knowledge on the positive and negative predictive value of blood biomarkers for concussion; to illustrate the clinical and biological contexts that help evaluate the use of these markers in sport-related traumatic brain injuries (TBIs).METHODS: This systematic review was performed in accordance with PRISMA guidelines. We reviewed the measurement, clinical utility, endpoint, and biological significance of blood biomarkers in concussion.RESULTS: A total of 4352 publications were identified. Twenty-six articles relating to blood biomarkers were included in the review. Four common blood biomarkers, namely S100B, tau, neuron-specific enolase (NSE), and glial fibrillary acidic protein (GFAP), were examined. Overall, the studies showed S100B measurement and use, either acutely or at several time points, can distinguish injured from noninjured patients with an uncertain degree of utility in predicting mortality. At present, S100B has largely become an acceptable biomarker of TBI; however, studies have begun to highlight the need to incorporate clinical symptoms instead of S100B concentration in isolation on the basis of inconsistent results and lack of specificity across published studies. Further research is needed to evaluate and validate the use of tau, NSE, and GFAP as a diagnostic aid in the management of concussion and TBI.CONCLUSIONS: At present, blood biomarkers have only a limited role in the evaluation and management of concussion. Although several biomarkers of brain injury have been identified, continued research is required. S100B holds promise as the most clinically useful diagnostic biomarker. Blood biomarkers, in combination with other clinical data, such as head computed tomography, would maximize the diagnostic accuracy. The methodological limitations evident in blood biomarker research results in the need for the clinical utility of blood biomarker use in concussion to be further explored.
  •  
7.
  • Parsa, Afshin, et al. (författare)
  • Common Variants in Mendelian Kidney Disease Genes and Their Association with Renal Function
  • 2013
  • Ingår i: Journal of the American Society of Nephrology. - 1046-6673 .- 1533-3450. ; 24:12, s. 2105-2117
  • Tidskriftsartikel (refereegranskat)abstract
    • Many common genetic variants identified by genome-wide association studies for complex traits map to genes previously linked to rare inherited Mendelian disorders. A systematic analysis of common single-nucleotide polymorphisms (SNPs) in genes responsible for Mendelian diseases with kidney phenotypes has not been performed. We thus developed a comprehensive database of genes for Mendelian kidney conditions and evaluated the association between common genetic variants within these genes and kidney function in the general population. Using the Online Mendelian Inheritance in Man database, we identified 731 unique disease entries related to specific renal search terms and confirmed a kidney phenotype in 218 of these entries, corresponding to mutations in 258 genes. We interrogated common SNPs (minor allele frequency >5%) within these genes for association with the estimated GFR in 74,354 European-ancestry participants from the CKDGen Consortium. However, the top four candidate SNPs (rs6433115 at LRP2, rs1050700 at TSC1, rs249942 at PALB2, and rs9827843 at ROBO2) did not achieve significance in a stage 2 meta-analysis performed in 56,246 additional independent individuals, indicating that these common SNPs are not associated with estimated GFR. The effect of less common or rare variants in these genes on kidney function in the general population and disease-specific cohorts requires further research.
  •  
8.
  • Pattaro, Cristian, et al. (författare)
  • Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways.
  •  
9.
  • Pattaro, Cristian, et al. (författare)
  • Genome-Wide Association and Functional Follow-Up Reveals New Loci for Kidney Function
  • 2012
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 8:3, s. e1002584-
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genomewide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy