SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Ribeiro Antonio L)) srt2:(2023)"

Sökning: (WFRF:(Ribeiro Antonio L)) > (2023)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brant, Luisa C. C., et al. (författare)
  • Association Between Electrocardiographic Age and Cardiovascular Events in Community Settings : The Framingham Heart Study
  • 2023
  • Ingår i: Circulation. Cardiovascular Quality and Outcomes. - : Ovid Technologies (Wolters Kluwer Health). - 1941-7713 .- 1941-7705. ; 16:7
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Deep neural networks have been used to estimate age from ECGs, the electrocardiographic age (ECG-age), which predicts adverse outcomes. However, this prediction ability has been restricted to clinical settings or relatively short periods. We hypothesized that ECG-age is associated with death and cardiovascular outcomes in the long-standing community-based FHS (Framingham Heart Study).METHODS: We tested the association of ECG-age with chronological age in the FHS cohorts in ECGs from 1986 to 2021. We calculated the gap between chronological and ECG-age (& UDelta;age) and classified individuals as having normal, accelerated, or decelerated aging, if & UDelta;age was within, higher, or lower than the mean absolute error of the model, respectively. We assessed the associations of & UDelta;age, accelerated and decelerated aging with death or cardiovascular outcomes (atrial fibrillation, myocardial infarction, and heart failure) using Cox proportional hazards models adjusted for age, sex, and clinical factors.RESULTS:The study population included 9877 FHS participants (mean age, 55 & PLUSMN;13 years; 54.9% women) with 34 948 ECGs. ECG-age was correlated to chronological age (r=0.81; mean absolute error, 9 & PLUSMN;7 years). After 17 & PLUSMN;8 years of follow-up, every 10-year increase of & UDelta;age was associated with 18% increase in all-cause mortality (hazard ratio [HR], 1.18 [95% CI, 1.12-1.23]), 23% increase in atrial fibrillation risk (HR, 1.23 [95% CI, 1.17-1.29]), 14% increase in myocardial infarction risk (HR, 1.14 [95% CI, 1.05-1.23]), and 40% increase in heart failure risk (HR, 1.40 [95% CI, 1.30-1.52]), in multivariable models. In addition, accelerated aging was associated with a 28% increase in all-cause mortality (HR, 1.28 [95% CI, 1.14-1.45]), whereas decelerated aging was associated with a 16% decrease (HR, 0.84 [95% CI, 0.74-0.95]).CONCLUSIONS:ECG-age was highly correlated with chronological age in FHS. The difference between ECG-age and chronological age was associated with death, myocardial infarction, atrial fibrillation, and heart failure. Given the wide availability and low cost of ECG, ECG-age could be a scalable biomarker of cardiovascular risk.
  •  
2.
  • Jidling, Carl, et al. (författare)
  • Screening for Chagas disease from the electrocardiogram using a deep neural network
  • 2023
  • Ingår i: PLoS Neglected Tropical Diseases. - : Public Library of Science (PLoS). - 1935-2727 .- 1935-2735. ; 17:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Chagas disease (ChD) is a neglected tropical disease, and the diagnosis relies on blood testing of patients from endemic areas. However, there is no clear recommendation on how to select patients for testing in endemic regions. Since most cases of Chronic ChD are asymptomatic, the diagnostic rates are low, preventing patients from receiving adequate treatment.The Electrocardiogram (ECG) is a widely available, low-cost exam, often available in primary care settings. We present an Artificial intelligence (AI) model for automatically detecting ChD from the ECG. AI algorithms have allowed the detection of hidden conditions on the ECG and, to the best of our knowledge, this is the first study that does it for ChD. We utilize large cohorts of patients from the relevant population of all-comers in affected regions in Brazil to develop a model for ChD detection that is then validated on datasets with ground truth labels obtained directly from the patients’ serological status.Our findings demonstrate a promising AI-ECG-based model for discriminating patients with chronic Chagas cardiomyopathy (CCC). The capacity of detecting ChD patients without CCC is still limited. But we believe this can be improved with the addition of epidemiological questions, and that such models can become useful tools for pre-selecting patients for further testing.
  •  
3.
  • Sartelli, Massimo, et al. (författare)
  • Ten golden rules for optimal antibiotic use in hospital settings: the WARNING call to action
  • 2023
  • Ingår i: WORLD JOURNAL OF EMERGENCY SURGERY. - 1749-7922. ; 18:1
  • Forskningsöversikt (refereegranskat)abstract
    • Antibiotics are recognized widely for their benefits when used appropriately. However, they are often used inappropriately despite the importance of responsible use within good clinical practice. Effective antibiotic treatment is an essential component of universal healthcare, and it is a global responsibility to ensure appropriate use. Currently, pharmaceutical companies have little incentive to develop new antibiotics due to scientific, regulatory, and financial barriers, further emphasizing the importance of appropriate antibiotic use. To address this issue, the Global Alliance for Infections in Surgery established an international multidisciplinary task force of 295 experts from 115 countries with different backgrounds. The task force developed a position statement called WARNING (Worldwide Antimicrobial Resistance National/International Network Group) aimed at raising awareness of antimicrobial resistance and improving antibiotic prescribing practices worldwide. The statement outlined is 10 axioms, or "golden rules," for the appropriate use of antibiotics that all healthcare workers should consistently adhere in clinical practice.
  •  
4.
  • Zhang, Cuili, et al. (författare)
  • Association of lifestyle with deep learning predicted electrocardiographic age
  • 2023
  • Ingår i: Frontiers in Cardiovascular Medicine. - : Frontiers Media S.A.. - 2297-055X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: People age at different rates. Biological age is a risk factor for many chronic diseases independent of chronological age. A good lifestyle is known to improve overall health, but its association with biological age is unclear.Methods: This study included participants from the UK Biobank who had undergone 12-lead resting electrocardiography (ECG). Biological age was estimated by a deep learning model (defined as ECG-age), and the difference between ECG-age and chronological age was defined as Delta age. Participants were further categorized into an ideal (score 4), intermediate (scores 2 and 3) or unfavorable lifestyle (score 0 or 1). Four lifestyle factors were investigated, including diet, alcohol consumption, physical activity, and smoking. Linear regression models were used to examine the association between lifestyle factors and Delta age, and the models were adjusted for sex and chronological age.Results: This study included 44,094 individuals (mean age 64 +/- 8, 51.4% females). A significant correlation was observed between predicted biological age and chronological age (correlation coefficient = 0.54, P < 0.001) and the mean Delta age (absolute error of biological age and chronological age) was 9.8 +/- 7.4 years. Delta age was significantly associated with all of the four lifestyle factors, with the effect size ranging from 0.41 +/- 0.11 for the healthy diet to 2.37 +/- 0.30 for non-smoking. Compared with an ideal lifestyle, an unfavorable lifestyle was associated with an average of 2.50 +/- 0.29 years of older predicted ECG-age.Conclusion: In this large contemporary population, a strong association was observed between all four studied healthy lifestyle factors and deaccelerated aging. Our study underscores the importance of a healthy lifestyle to reduce the burden of aging-related diseases.
  •  
5.
  • Tavares, Julia, et al. (författare)
  • Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests
  • 2023
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 617:7959, s. 111-117
  • Tidskriftsartikel (refereegranskat)abstract
    • Tropical forests face increasing climate risk(1,2), yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, ?(50)) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk(3-5), little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters ?(50) and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both ?(50) and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM(50 )forests. We propose that this may be associated with a growth-mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon(6,7), with strong implications for the Amazon carbon sink.
  •  
6.
  • Hess, Timo, et al. (författare)
  • Dissecting the genetic heterogeneity of gastric cancer
  • 2023
  • Ingår i: EBioMedicine. - : Elsevier. - 2352-3964. ; 92
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Gastric cancer (GC) is clinically heterogenous according to location (cardia/non-cardia) and histopathology (diffuse/intestinal). We aimed to characterize the genetic risk architecture of GC according to its subtypes. Another aim was to examine whether cardia GC and oesophageal adenocarcinoma (OAC) and its precursor lesion Barrett's oesophagus (BO), which are all located at the gastro-oesophageal junction (GOJ), share polygenic risk architecture.Methods: We did a meta-analysis of ten European genome-wide association studies (GWAS) of GC and its subtypes. All patients had a histopathologically confirmed diagnosis of gastric adenocarcinoma. For the identification of risk genes among GWAS loci we did a transcriptome-wide association study (TWAS) and expression quantitative trait locus (eQTL) study from gastric corpus and antrum mucosa. To test whether cardia GC and OAC/BO share genetic aetiology we also used a European GWAS sample with OAC/BO.Findings: Our GWAS consisting of 5816 patients and 10,999 controls highlights the genetic heterogeneity of GC according to its subtypes. We newly identified two and replicated five GC risk loci, all of them with subtype-specific association. The gastric transcriptome data consisting of 361 corpus and 342 antrum mucosa samples revealed that an upregulated expression of MUC1, ANKRD50, PTGER4, and PSCA are plausible GC-pathomechanisms at four GWAS loci. At another risk locus, we found that the blood-group 0 exerts protective effects for non-cardia and diffuse GC, while blood-group A increases risk for both GC subtypes. Furthermore, our GWAS on cardia GC and OAC/BO (10,279 patients, 16,527 controls) showed that both cancer entities share genetic aetiology at the polygenic level and identified two new risk loci on the single-marker level.Interpretation: Our findings show that the pathophysiology of GC is genetically heterogenous according to location and histopathology. Moreover, our findings point to common molecular mechanisms underlying cardia GC and OAC/BO. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy