SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Rominger Axel)) srt2:(2020-2024)"

Sökning: (WFRF:(Rominger Axel)) > (2020-2024)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bauckneht, Matteo, et al. (författare)
  • Associations among education, age, and the dementia with Lewy bodies (DLB) metabolic pattern: A European-DLB consortium project
  • 2021
  • Ingår i: Alzheimer's & Dementia. - : WILEY. - 1552-5260 .- 1552-5279. ; 17:8, s. 1277-1286
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction We assessed the influence of education as a proxy of cognitive reserve and age on the dementia with Lewy bodies (DLB) metabolic pattern. Methods Brain 18F-fluorodeoxyglucose positron emission tomography and clinical/demographic information were available in 169 probable DLB patients included in the European DLB-consortium database. Principal component analysis identified brain regions relevant to local data variance. A linear regression model was applied to generate age- and education-sensitive maps corrected for Mini-Mental State Examination score, sex (and either education or age). Results Age negatively covaried with metabolism in bilateral middle and superior frontal cortex, anterior and posterior cingulate, reducing the expression of the DLB-typical cingulate island sign (CIS). Education negatively covaried with metabolism in the left inferior parietal cortex and precuneus (making the CIS more prominent). Discussion These findings point out the importance of tailoring interpretation of DLB biomarkers considering the concomitant effect of individual, non-disease-related variables such as age and cognitive reserve.
  •  
2.
  • Biechele, Gloria, et al. (författare)
  • Associations between sex, body mass index and the individual microglial response in Alzheimer's disease
  • 2024
  • Ingår i: JOURNAL OF NEUROINFLAMMATION. - 1742-2094. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and objectives18-kDa translocator protein position-emission-tomography (TSPO-PET) imaging emerged for in vivo assessment of neuroinflammation in Alzheimer's disease (AD) research. Sex and obesity effects on TSPO-PET binding have been reported for cognitively normal humans (CN), but such effects have not yet been systematically evaluated in patients with AD. Thus, we aimed to investigate the impact of sex and obesity on the relationship between beta-amyloid-accumulation and microglial activation in AD.Methods49 patients with AD (29 females, all A beta-positive) and 15 A beta-negative CN (8 female) underwent TSPO-PET ([18F]GE-180) and beta-amyloid-PET ([18F]flutemetamol) imaging. In 24 patients with AD (14 females), tau-PET ([18F]PI-2620) was additionally available. The brain was parcellated into 218 cortical regions and standardized-uptake-value-ratios (SUVr, cerebellar reference) were calculated. Per region and tracer, the regional increase of PET SUVr (z-score) was calculated for AD against CN. The regression derived linear effect of regional A beta-PET on TSPO-PET was used to determine the A beta-plaque-dependent microglial response (slope) and the A beta-plaque-independent microglial response (intercept) at the individual patient level. All read-outs were compared between sexes and tested for a moderation effect of sex on associations with body mass index (BMI).ResultsIn AD, females showed higher mean cortical TSPO-PET z-scores (0.91 +/- 0.49; males 0.30 +/- 0.75; p = 0.002), while A beta-PET z-scores were similar. The A beta-plaque-independent microglial response was stronger in females with AD (+ 0.37 +/- 0.38; males with AD - 0.33 +/- 0.87; p = 0.006), pronounced at the prodromal stage. On the contrary, the A beta-plaque-dependent microglial response was not different between sexes. The A beta-plaque-independent microglial response was significantly associated with tau-PET in females (Braak-II regions: r = 0.757, p = 0.003), but not in males. BMI and the A beta-plaque-independent microglial response were significantly associated in females (r = 0.44, p = 0.018) but not in males (BMI*sex interaction: F(3,52) = 3.077, p = 0.005).ConclusionWhile microglia response to fibrillar A beta is similar between sexes, women with AD show a stronger A beta-plaque-independent microglia response. This sex difference in A beta-independent microglial activation may be associated with tau accumulation. BMI is positively associated with the A beta-plaque-independent microglia response in females with AD but not in males, indicating that sex and obesity need to be considered when studying neuroinflammation in AD.
  •  
3.
  • Etminani, Kobra, 1984-, et al. (författare)
  • A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimers disease, and mild cognitive impairment using brain 18F-FDG PET
  • 2022
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - New York : Springer. - 1619-7070 .- 1619-7089. ; 49, s. 563-584
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose The purpose of this study is to develop and validate a 3D deep learning model that predicts the final clinical diagnosis of Alzheimers disease (AD), dementia with Lewy bodies (DLB), mild cognitive impairment due to Alzheimers disease (MCI-AD), and cognitively normal (CN) using fluorine 18 fluorodeoxyglucose PET (18F-FDG PET) and compare models performance to that of multiple expert nuclear medicine physicians readers. Materials and methods Retrospective 18F-FDG PET scans for AD, MCI-AD, and CN were collected from Alzheimers disease neuroimaging initiative (556 patients from 2005 to 2020), and CN and DLB cases were from European DLB Consortium (201 patients from 2005 to 2018). The introduced 3D convolutional neural network was trained using 90% of the data and externally tested using 10% as well as comparison to human readers on the same independent test set. The models performance was analyzed with sensitivity, specificity, precision, F1 score, receiver operating characteristic (ROC). The regional metabolic changes driving classification were visualized using uniform manifold approximation and projection (UMAP) and network attention. Results The proposed model achieved area under the ROC curve of 96.2% (95% confidence interval: 90.6-100) on predicting the final diagnosis of DLB in the independent test set, 96.4% (92.7-100) in AD, 71.4% (51.6-91.2) in MCI-AD, and 94.7% (90-99.5) in CN, which in ROC space outperformed human readers performance. The network attention depicted the posterior cingulate cortex is important for each neurodegenerative disease, and the UMAP visualization of the extracted features by the proposed model demonstrates the reality of development of the given disorders. Conclusion Using only 18F-FDG PET of the brain, a 3D deep learning model could predict the final diagnosis of the most common neurodegenerative disorders which achieved a competitive performance compared to the human readers as well as their consensus.
  •  
4.
  • Finze, Anika, et al. (författare)
  • Individual regional associations between Aβ-, tau- and neurodegeneration (ATN) with microglial activation in patients with primary and secondary tauopathies
  • 2023
  • Ingår i: MOLECULAR PSYCHIATRY. - 1359-4184 .- 1476-5578. ; 28:10, s. 4438-4450
  • Tidskriftsartikel (refereegranskat)abstract
    • & beta;-amyloid (A & beta;) and tau aggregation as well as neuronal injury and atrophy (ATN) are the major hallmarks of Alzheimer's disease (AD), and biomarkers for these hallmarks have been linked to neuroinflammation. However, the detailed regional associations of these biomarkers with microglial activation in individual patients remain to be elucidated. We investigated a cohort of 55 patients with AD and primary tauopathies and 10 healthy controls that underwent TSPO-, A & beta;-, tau-, and perfusion-surrogate-PET, as well as structural MRI. Z-score deviations for 246 brain regions were calculated and biomarker contributions of A & beta; (A), tau (T), perfusion (N1), and gray matter atrophy (N2) to microglial activation (TSPO, I) were calculated for each individual subject. Individual ATN-related microglial activation was correlated with clinical performance and CSF soluble TREM2 (sTREM2) concentrations. In typical and atypical AD, regional tau was stronger and more frequently associated with microglial activation when compared to regional A & beta; (AD: & beta;(T) = 0.412 & PLUSMN; 0.196 vs. & beta;(A) = 0.142 & PLUSMN; 0.123, p < 0.001; AD-CBS: & beta;(T) = 0.385 & PLUSMN; 0.176 vs. & beta;(A) = 0.131 & PLUSMN; 0.186, p = 0.031). The strong association between regional tau and microglia reproduced well in primary tauopathies (& beta;(T) = 0.418 & PLUSMN; 0.154). Stronger individual associations between tau and microglial activation were associated with poorer clinical performance. In patients with 4RT, sTREM2 levels showed a positive association with tau-related microglial activation. Tau pathology has strong regional associations with microglial activation in primary and secondary tauopathies. Tau and A & beta; related microglial response indices may serve as a two-dimensional in vivo assessment of neuroinflammation in neurodegenerative diseases.
  •  
5.
  • Huber, Maria, et al. (författare)
  • Metabolic correlates of dopaminergic loss in dementia with lewy bodies
  • 2020
  • Ingår i: Movement Disorders. - : WILEY. - 0885-3185 .- 1531-8257. ; 35, s. 595-605
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Striatal dopamine deficiency and metabolic changes are well-known phenomena in dementia with Lewy bodies and can be quantified in vivo by I-123-Ioflupane brain single-photon emission computed tomography of dopamine transporter and F-18-fluorodesoxyglucose PET. However, the linkage between both biomarkers is ill-understood. Objective We used the hitherto largest study cohort of combined imaging from the European consortium to elucidate the role of both biomarkers in the pathophysiological course of dementia with Lewy bodies. Methods We compared striatal dopamine deficiency and glucose metabolism of 84 dementia with Lewy body patients and comparable healthy controls. After normalization of data, we tested their correlation by region-of-interest-based and voxel-based methods, controlled for study center, age, sex, education, and current cognitive impairment. Metabolic connectivity was analyzed by inter-region coefficients stratified by dopamine deficiency and compared to healthy controls. Results There was an inverse relationship between striatal dopamine availability and relative glucose hypermetabolism, pronounced in the basal ganglia and in limbic regions. With increasing dopamine deficiency, metabolic connectivity showed strong deteriorations in distinct brain regions implicated in disease symptoms, with greatest disruptions in the basal ganglia and limbic system, coincident with the pattern of relative hypermetabolism. Conclusions Relative glucose hypermetabolism and disturbed metabolic connectivity of limbic and basal ganglia circuits are metabolic correlates of dopamine deficiency in dementia with Lewy bodies. Identification of specific metabolic network alterations in patients with early dopamine deficiency may serve as an additional supporting biomarker for timely diagnosis of dementia with Lewy bodies. (c) 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
  •  
6.
  • Soliman, Amira, 1980-, et al. (författare)
  • Adopting transfer learning for neuroimaging : a comparative analysis with a custom 3D convolution neural network model
  • 2022
  • Ingår i: BMC Medical Informatics and Decision Making. - London : BioMed Central (BMC). - 1472-6947. ; 22, s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: In recent years, neuroimaging with deep learning (DL) algorithms have made remarkable advances in the diagnosis of neurodegenerative disorders. However, applying DL in different medical domains is usually challenged by lack of labeled data. To address this challenge, transfer learning (TL) has been applied to use state-of-the-art convolution neural networks pre-trained on natural images. Yet, there are differences in characteristics between medical and natural images, also image classification and targeted medical diagnosis tasks. The purpose of this study is to investigate the performance of specialized and TL in the classification of neurodegenerative disorders using 3D volumes of 18F-FDG-PET brain scans. Results: Results show that TL models are suboptimal for classification of neurodegenerative disorders, especially when the objective is to separate more than two disorders. Additionally, specialized CNN model provides better interpretations of predicted diagnosis. Conclusions: TL can indeed lead to superior performance on binary classification in timely and data efficient manner, yet for detecting more than a single disorder, TL models do not perform well. Additionally, custom 3D model performs comparably to TL models for binary classification, and interestingly perform better for diagnosis of multiple disorders. The results confirm the superiority of the custom 3D-CNN in providing better explainable model compared to TL adopted ones. © 2022, The Author(s).
  •  
7.
  • Stockbauer, Anna, et al. (författare)
  • Metabolic network alterations as a supportive biomarker in dementia with Lewy bodies with preserved dopamine transmission
  • 2024
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : SPRINGER. - 1619-7070 .- 1619-7089. ; 51:4, s. 1023-1034
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose Metabolic network analysis of FDG-PET utilizes an index of inter-regional correlation of resting state glucose metabolism and has been proven to provide complementary information regarding the disease process in parkinsonian syndromes. The goals of this study were (i) to evaluate pattern similarities of glucose metabolism and network connectivity in dementia with Lewy bodies (DLB) subjects with subthreshold dopaminergic loss compared to advanced disease stages and to (ii) investigate metabolic network alterations of FDG-PET for discrimination of patients with early DLB from other neurodegenerative disorders (Alzheimer's disease, Parkinson's disease, multiple system atrophy) at individual patient level via principal component analysis (PCA).Methods FDG-PETs of subjects with probable or possible DLB (n = 22) without significant dopamine deficiency (z-score < 2 in putamen binding loss on DaT-SPECT compared to healthy controls (HC)) were scaled by global-mean, prior to volume-of-interest-based analyses of relative glucose metabolism. Single region metabolic changes and network connectivity changes were compared against HC (n = 23) and against DLB subjects with significant dopamine deficiency (n = 86). PCA was applied to test discrimination of patients with DLB from disease controls (n = 101) at individual patient level.Results Similar patterns of hypo- (parietal- and occipital cortex) and hypermetabolism (basal ganglia, limbic system, motor cortices) were observed in DLB patients with and without significant dopamine deficiency when compared to HC. Metabolic connectivity alterations correlated between DLB patients with and without significant dopamine deficiency (R2 = 0.597, p < 0.01). A PCA trained by DLB patients with dopamine deficiency and HC discriminated DLB patients without significant dopaminergic loss from other neurodegenerative parkinsonian disorders at individual patient level (area-under-the-curve (AUC): 0.912).Conclusion Disease-specific patterns of altered glucose metabolism and altered metabolic networks are present in DLB subjects without significant dopaminergic loss. Metabolic network alterations in FDG-PET can act as a supporting biomarker in the subgroup of DLB patients without significant dopaminergic loss at symptoms onset.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy