SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Rosa Neto Pedro)) pers:(Servaes Stijn) srt2:(2024)"

Sökning: (WFRF:(Rosa Neto Pedro)) pers:(Servaes Stijn) > (2024)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ashton, Nicholas J., et al. (författare)
  • Diagnostic Accuracy of a Plasma Phosphorylated Tau 217 Immunoassay for Alzheimer Disease Pathology
  • 2024
  • Ingår i: JAMA NEUROLOGY. - 2168-6149 .- 2168-6157.
  • Tidskriftsartikel (refereegranskat)abstract
    • ImportancePhosphorylated tau (p-tau) is a specific blood biomarker for Alzheimer disease (AD) pathology, with p-tau217 considered to have the most utility. However, availability of p-tau217 tests for research and clinical use has been limited. Expanding access to this highly accurate AD biomarker is crucial for wider evaluation and implementation of AD blood tests. ObjectiveTo determine the utility of a novel and commercially available immunoassay for plasma p-tau217 to detect AD pathology and evaluate reference ranges for abnormal amyloid beta (A beta) and longitudinal change across 3 selected cohorts. Design, Setting, and ParticipantsThis cohort study examined data from 3 single-center observational cohorts: cross-sectional and longitudinal data from the Translational Biomarkers in Aging and Dementia (TRIAD) cohort (visits October 2017-August 2021) and Wisconsin Registry for Alzheimer's Prevention (WRAP) cohort (visits February 2007-November 2020) and cross-sectional data from the Sant Pau Initiative on Neurodegeneration (SPIN) cohort (baseline visits March 2009-November 2021). Participants included individuals with and without cognitive impairment grouped by amyloid and tau (AT) status using PET or CSF biomarkers. Data were analyzed from February to June 2023. ExposuresMagnetic resonance imaging, A beta positron emission tomography (PET), tau PET, cerebrospinal fluid (CSF) biomarkers (A beta 42/40 and p-tau immunoassays), and plasma p-tau217 (ALZpath pTau217 assay). Main Outcomes and MeasuresAccuracy of plasma p-tau217 in detecting abnormal amyloid and tau pathology, longitudinal p-tau217 change according to baseline pathology status. ResultsThe study included 786 participants (mean [SD] age, 66.3 [9.7] years; 504 females [64.1%] and 282 males [35.9%]). High accuracy was observed in identifying elevated A beta (area under the curve [AUC], 0.92-0.96; 95% CI, 0.89-0.99) and tau pathology (AUC, 0.93-0.97; 95% CI, 0.84-0.99) across all cohorts. These accuracies were comparable with CSF biomarkers in determining abnormal PET signal. The detection of abnormal A beta pathology using a 3-range reference yielded reproducible results and reduced confirmatory testing by approximately 80%. Longitudinally, plasma p-tau217 values showed an annual increase only in A beta-positive individuals, with the highest increase observed in those with tau positivity. Conclusions and RelevanceThis study found that a commercially available plasma p-tau217 immunoassay accurately identified biological AD, comparable with results using CSF biomarkers, with reproducible cut-offs across cohorts. It detected longitudinal changes, including at the preclinical stage.
  •  
2.
  • Lantero Rodriguez, Juan, et al. (författare)
  • CSF p-tau205: a biomarker of tau pathology in Alzheimer's disease.
  • 2024
  • Ingår i: Acta neuropathologica. - 1432-0533. ; 147:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Post-mortem staging of Alzheimer's disease (AD) neurofibrillary pathology is commonly performed by immunohistochemistry using AT8 antibody for phosphorylated tau (p-tau) at positions 202/205. Thus, quantification of p-tau205 and p-tau202 in cerebrospinal fluid (CSF) should be more reflective of neurofibrillary tangles in AD than other p-tau epitopes. We developed two novel Simoa immunoassays for CSF p-tau205 and p-tau202 and measured these phosphorylations in three independent cohorts encompassing the AD continuum, non-AD cases and cognitively unimpaired participants: a discovery cohort (n=47), an unselected clinical cohort (n=212) and a research cohort well-characterized by fluid and imaging biomarkers (n=262). CSF p-tau205 increased progressively across the AD continuum, while CSF p-tau202 was increased only in AD and amyloid(Aβ) and tau pathology positive (A+T+) cases (P<0.01). In A+cases, CSF p-tau205 and p-tau202 showed stronger associations with tau-PET (rSp205=0.67, rSp202=0.45) than Aβ-PET (rSp205=0.40, rSp202=0.09). CSF p-tau205 increased gradually across tau-PET Braak stages (P<0.01), whereas p-tau202 only increased in Braak V-VI (P<0.0001). Both showed stronger regional associations with tau-PET than with Aβ-PET, and CSF p-tau205 was significantly associated with Braak V-VI tau-PET regions. When assessing the contribution of Aβ and tau pathologies (indexed by PET) to CSF p-tau205 and p-tau202 variance, tau pathology was found to be the most prominent contributor in both cases (CSF p-tau205: R2=69.7%; CSF p-tau202: R2=85.6%) Both biomarkers associated with brain atrophy measurements globally (rSp205=-0.36, rSp202=-0.33) and regionally, and correlated with cognition (rSp205=-0.38/-0.40, rSp202=-0.20/-0.29). In conclusion, we report the first high-throughput CSF p-tau205 immunoassay for the in vivo quantification of tau pathology in AD, and a potentially cost-effective alternative to tau-PET in clinical settings and clinical trials.
  •  
3.
  • Sanchez-Rodriguez, Lazaro M, et al. (författare)
  • Personalized whole-brain neural mass models reveal combined Aβ and tau hyperexcitable influences in Alzheimer's disease.
  • 2024
  • Ingår i: Communications biology. - 2399-3642. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuronal dysfunction and cognitive deterioration in Alzheimer's disease (AD) are likely caused by multiple pathophysiological factors. However, mechanistic evidence in humans remains scarce, requiring improved non-invasive techniques and integrative models. We introduce personalized AD computational models built on whole-brain Wilson-Cowan oscillators and incorporating resting-state functional MRI, amyloid-β (Aβ) and tau-PET from 132 individuals in the AD spectrum to evaluate the direct impact of toxic protein deposition on neuronal activity. This subject-specific approach uncovers key patho-mechanistic interactions, including synergistic Aβ and tau effects on cognitive impairment and neuronal excitability increases with disease progression. The data-derived neuronal excitability values strongly predict clinically relevant AD plasma biomarker concentrations (p-tau217, p-tau231, p-tau181, GFAP) and grey matter atrophy obtained through voxel-based morphometry. Furthermore, reconstructed EEG proxy quantities show the hallmark AD electrophysiological alterations (theta band activity enhancement and alpha reductions) which occur with Aβ-positivity and after limbic tau involvement. Microglial activation influences on neuronal activity are less definitive, potentially due to neuroimaging limitations in mapping neuroprotective vs detrimental activation phenotypes. Mechanistic brain activity models can further clarify intricate neurodegenerative processes and accelerate preventive/treatment interventions.
  •  
4.
  • Scheeren Brum, Wagner, 1997, et al. (författare)
  • A blood-based biomarker workflow for optimal tau-PET referral in memory clinic settings.
  • 2024
  • Ingår i: Nature communications. - 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood-based biomarkers for screening may guide tau positrion emissition tomography (PET) scan referrals to optimize prognostic evaluation in Alzheimer's disease. Plasma Aβ42/Aβ40, pTau181, pTau217, pTau231, NfL, and GFAP were measured along with tau-PET in memory clinic patients with subjective cognitive decline, mild cognitive impairment or dementia, in the Swedish BioFINDER-2 study (n=548) and in the TRIAD study (n=179). For each plasma biomarker, cutoffs were determined for 90%, 95%, or 97.5% sensitivity to detect tau-PET-positivity. We calculated the percentage of patients below the cutoffs (who would not undergo tau-PET; "saved scans") and the tau-PET-positivity rate among participants above the cutoffs (who would undergo tau-PET; "positive predictive value"). Generally, plasma pTau217 performed best. At the 95% sensitivity cutoff in both cohorts, pTau217 resulted in avoiding nearly half tau-PET scans, with a tau-PET-positivity rate among those who would be referred for a scan around 70%. And although tau-PET was strongly associated with subsequent cognitive decline, in BioFINDER-2 it predicted cognitive decline only among individuals above the referral cutoff on plasma pTau217, supporting that this workflow could reduce prognostically uninformative tau-PET scans. In conclusion, plasma pTau217 may guide selection of patients for tau-PET, when accurate prognostic information is of clinical value.
  •  
5.
  • Therriault, Joseph, et al. (författare)
  • Comparison of immunoassay- with mass spectrometry-derived p-tau quantification for the detection of Alzheimer’s disease pathology
  • 2024
  • Ingår i: Molecular Neurodegeneration. - 1750-1326. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Antibody-based immunoassays have enabled quantification of very low concentrations of phosphorylated tau (p-tau) protein forms in cerebrospinal fluid (CSF), aiding in the diagnosis of AD. Mass spectrometry enables absolute quantification of multiple p-tau variants within a single run. The goal of this study was to compare the performance of mass spectrometry assessments of p-tau181, p-tau217 and p-tau231 with established immunoassay techniques. Methods: We measured p-tau181, p-tau217 and p-tau231 concentrations in CSF from 173 participants from the TRIAD cohort and 394 participants from the BioFINDER-2 cohort using both mass spectrometry and immunoassay methods. All subjects were clinically evaluated by dementia specialists and had amyloid-PET and tau-PET assessments. Bland–Altman analyses evaluated the agreement between immunoassay and mass spectrometry p-tau181, p-tau217 and p-tau231. P-tau associations with amyloid-PET and tau-PET uptake were also compared. Receiver Operating Characteristic (ROC) analyses compared the performance of mass spectrometry and immunoassays p-tau concentrations to identify amyloid-PET positivity. Results: Mass spectrometry and immunoassays of p-tau217 were highly comparable in terms of diagnostic performance, between-group effect sizes and associations with PET biomarkers. In contrast, p-tau181 and p-tau231 concentrations measured using antibody-free mass spectrometry had lower performance compared with immunoassays. Conclusions: Our results suggest that while similar overall, immunoassay-based p-tau biomarkers are slightly superior to antibody-free mass spectrometry-based p-tau biomarkers. Future work is needed to determine whether the potential to evaluate multiple biomarkers within a single run offsets the slightly lower performance of antibody-free mass spectrometry-based p-tau quantification.
  •  
6.
  • Therriault, Joseph, et al. (författare)
  • Comparison of two plasma p-tau217 assays to detect and monitor Alzheimer's pathology.
  • 2024
  • Ingår i: EBioMedicine. - 2352-3964. ; 102
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood-based biomarkers of Alzheimer's disease (AD) have become increasingly important as scalable tools for diagnosis and determining clinical trial eligibility. P-tau217 is the most promising due to its excellent sensitivity and specificity for AD-related pathological changes.We compared the performance of two commercially available plasma p-tau217 assays (ALZpath p-tau217 and Janssen p-tau217+) in 294 individuals cross-sectionally. Correlations with amyloid PET and tau PET were assessed, and Receiver Operating Characteristic (ROC) analyses evaluated both p-tau217 assays for identifying AD pathology.Both plasma p-tau217 assays were strongly associated with amyloid and tau PET. Furthermore, both plasma p-tau217 assays identified individuals with AD vs other neurodegenerative diseases (ALZpath AUC=0.95; Janssen AUC=0.96). Additionally, plasma p-tau217 concentrations rose with AD severity and their annual changes correlated with tau PET annual change.Both p-tau217 assays had excellent diagnostic performance for AD. Our study supports the future clinical use of commercially-available assays for p-tau217.This research is supported by the Weston Brain Institute, Canadian Institutes of Health Research (CIHR), Canadian Consortium on Neurodegeneration in Aging, the Alzheimer's Association, Brain Canada Foundation, the Fonds de Recherche du Québec - Santé and the Colin J. Adair Charitable Foundation.
  •  
7.
  • Wang, Yi-Ting, et al. (författare)
  • Sex-specific modulation of amyloid-β on tau phosphorylation underlies faster tangle accumulation in females
  • 2024
  • Ingår i: Brain : a journal of neurology. - 1460-2156. ; 147:4, s. 1497-1510
  • Tidskriftsartikel (refereegranskat)abstract
    • Females are disproportionately affected by dementia due to Alzheimer's disease. Despite a similar Aβ load, females showed a higher load of neurofibrillary tangle as compared to males. Previous literature has proposed that Aβ and p-tau synergism accelerates tau tangle formation, yet the effect of biological sex in this process was overlooked. In this observational study, we examined longitudinal neuroimaging data from two cohorts, the TRIAD cohort in Canada, and the ADNI cohort in the United States. We assessed a total number of 457 participants across the clinical spectrum of AD. All participants underwent a baseline multimodal imaging assessment, including MRIs and PET scans with radioligands targeting Aβ plaques and tau tangles respectively. CSF data was also collected. Follow-up imaging assessments were conducted at the 1-year and 2-year intervals for the TRIAD cohort, and at the 1-year, 2-year and 4-year intervals for the ADNI cohort. The goal of the present study was to investigate the upstream pathological events contributing to the faster tau progression observed in females. Specifically, we assessed if the contribution of Aβ and p-tau synergism on accelerated tau tangle formation was modulated by the biological sex. We hypothesized that the cortical Aβ predisposes tau phosphorylation and tangle accumulation in a sex-specific manner. Findings from this study revealed that Aβ-positive females presented higher CSF p-tau181 concentrations as compared to Aβ-positive males in both TRIAD (P=0.04, Cohen's d=0.51) and ADNI cohort (P=0.027, Cohen's d=0.41). In addition, Aβ-positive females also presented faster NFT accumulation compared to their male counterparts (TRIAD: P=0.026, Cohen's d=0.52; ADNI: P=0.049, Cohen's d=1.14). Finally, findings from this present study unveiled that the triple interaction between female sex, Aβ and CSF p-tau181 is a significant predictor of accelerated tau accumulation at the 2-year follow-up visit (Braak I: P=0.0067, t=2.81; Braak III: P=0.017, t=2.45; Braak IV: P=0.002, t=3.17; Braak V: P=0.006, t=2.88; Braak VI: P=0.0049, t=2.93). Overall, this study reported a sex-specific modulation of cortical Aβ on tau phosphorylation, and this consequently facilitates faster NFT progression seen in female individuals over time. This presents important clinical implications suggesting the early intervention targeting Aβ plaques and tau phosphorylation may be promising therapeutic strategies for females to prevent further accumulation and spread of tau aggregates.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy