SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Salehi S Albert)) srt2:(2010-2014) srt2:(2011)"

Sökning: (WFRF:(Salehi S Albert)) srt2:(2010-2014) > (2011)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bolmeson, Caroline, et al. (författare)
  • Differences in islet-enriched miRNAs in healthy and glucose intolerant human subjects.
  • 2011
  • Ingår i: Biochemical and Biophysical Research Communications. - : Elsevier BV. - 1090-2104 .- 0006-291X. ; Dec, s. 16-22
  • Tidskriftsartikel (refereegranskat)abstract
    • Many microRNAs (miRNAs) are known to be cell-type specific and are implicated in development of diseases. We investigated the global expression pattern of miRNAs in human pancreatic islets compared to liver and skeletal muscle, using bead-based technology and quantitative RT-PCR. In addition to the known islet-specific miR-375, we also found enrichment of miR-127-3p, miR-184, miR-195 and miR-493∗ in the pancreatic islets. The expression of miR-375, miR-127-3p, miR-184 and the liver-enriched miR-122 were positively correlated to insulin biosynthesis, while the expression of miR-127-3p and miR-184 were negatively correlated to glucose-stimulated insulin secretion (GSIS). These correlations were absent in islets of glucose intolerant donors (HbA1c⩾6.1). We suggest the presence of an islet-specific miRNA network, which consists of at least miR-375, miR-127-3p and miR-184, potentially involved in insulin secretion. Our results provide new insight into miRNA-mediated regulation of insulin secretion in healthy and glucose intolerant subjects.
  •  
2.
  • Jimenez, Javier, et al. (författare)
  • Abnormally decreased NO and augmented CO production in islets of the leptin-deficient ob/ob mouse might contribute to explain hyperinsulinemia and islet survival in leptin-resistant type 2 obese diabetes.
  • 2011
  • Ingår i: Regulatory Peptides. - : Elsevier BV. - 1873-1686 .- 0167-0115. ; 170, s. 43-51
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of the gaseous messengers NO and CO for β-cell function and survival is controversial. We examined this issue in the hyperglycemic-hyperinsulinemic ob/ob mouse, an animal model of type 2 obese diabetes, by studying islets from obese vs lean mice regarding glucose-stimulated insulin release in relation to islet NO and CO production and the influence of modulating peptide hormones. Glucose-stimulated increase in ncNOS-activity in incubated lean islets was converted to a decrease in ob/ob islets associated with markedly increased insulin release. Both types of islet displayed iNOS activity appearing after ~60min in high-glucose. In ob/ob islets the insulinotropic peptides glucagon, GLP-1 and GIP suppressed NOS activities and amplified glucose-stimulated insulin release. The insulinostatic peptide leptin induced the opposite effects. Suppression of islet CO production inhibited, while stimulation amplified glucose-stimulated insulin release. Nonincubated isolated islets from young and adult obese mice displayed very low ncNOS and negligible iNOS activity. In contrast, production of CO, a NOS inhibitor, was impressively raised. Glucose injections induced strong activities of islet NOS isoforms in lean but not in obese mice and confocal microscopy revealed iNOS expression only in lean islets. Islets from ob/ob mice existing in a hyperglycemic in vivo milieu maintain elevated insulin secretion and protection from glucotoxicity through a general suppression of islet NOS activities achieved by leptin deficiency, high CO production and insulinotropic cyclic-AMP-generating hormones. Such a beneficial effect on islet function and survival might have its clinical counterpart in human leptin-resistant type 2 obese diabetes with hyperinsulinemia.
  •  
3.
  • Kumar, Rajesh, et al. (författare)
  • Insulinotropic and Antidiabetic Effects of 17{beta}-Estradiol and the GPR30 Agonist G-1 on Human Pancreatic Islets.
  • 2011
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 152:7, s. 2568-2579
  • Tidskriftsartikel (refereegranskat)abstract
    • We have recently shown that 17β-estradiol (E2) and the synthetic G protein-coupled receptor 30 (GPR30) ligand G-1 have antiapoptotic actions in mouse pancreatic islets, raising the prospect that they might exert beneficial effects also in human islets. The objective of the present study was to identify the expression of GPR30 in human islets and clarify the role of GPR30 in islet hormone secretion and β-cell survival. GPR30 expression was analyzed by confocal microscopy, Western blot, and quantitative PCR in islets from female and male donors. Hormone secretion, phosphatidylinositol hydrolysis, cAMP content, and caspase-3 activity in female islets were determined with conventional methods and apoptosis with the annexin-V method. Confocal microscopy revealed GPR30 expression in islet insulin, glucagon, and somatostatin cells. GPR30 mRNA and protein expression was markedly higher in female vs. male islets. An amplifying effect of G-1 or E2 on cAMP content and insulin secretion from isolated female islets was not influenced by the E2 genomic receptor (ERα and ERβ) antagonists ICI 182,780 and EM-652. Cytokine-induced (IL-1β plus TNFα plus interferon-γ) apoptosis in islets cultured for 24 h at 5 mmol/liter glucose was almost abolished by G-1 or E2 treatment and was not affected by the nuclear estrogen receptor antagonists. Concentration-response studies on female islets from healthy controls and type 2 diabetic subjects showed that both E2 and G-1 displayed important antidiabetic actions by improving glucose-stimulated insulin release while suppressing glucagon and somatostatin secretion. In view of these findings, we propose that small molecules activating GPR30 could be promising in the therapy of diabetes mellitus.
  •  
4.
  • Lyssenko, Valeriya, et al. (författare)
  • Pleiotropic Effects of GIP on Islet Function Involve Osteopontin
  • 2011
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 60:9, s. 2424-2433
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-The incretin hormone GIP (glucose-dependent insulinotropic polypeptide) promotes pancreatic beta-cell function by potentiating insulin secretion and beta-cell proliferation. Recently, a combined analysis of several genome-wide association studies (Meta-analysis of Glucose and Insulin-Related Traits Consortium [MAGIC]) showed association to postprandial insulin at the GIP receptor (GIPR) locus. Here we explored mechanisms that could explain the protective effects of GIP on islet function. RESEARCH DESIGN AND METHODS-Associations of GIPR rs10423928 with metabolic and anthropometric phenotypes in both nondiabetic (N = 53,730) and type 2 diabetic individuals (N = 2,731) were explored by combining data from 11 studies.Insulin secretion was measured both in vivo in nondiabetic subjects and in vitro in islets from cadaver donors. Insulin secretion was also measured in response to exogenous GIP. The in vitro measurements included protein and gene expression as well as measurements of beta-cell viability and proliferation. RESULTS-The A allele of GIPR rs10423928 was associated with impaired glucose- and GIP-stimulated insulin secretion and a decrease in BMI, lean body mass, and waist circumference. The decrease in BMI almost completely neutralized the effect of impaired insulin secretion on risk of type 2 diabetes. Expression of GIPR mRNA was decreased in human islets from carriers of the A allele or patients with type 2 diabetes. GIP stimulated osteopontin (OPN) mRNA and protein expression. OPN expression was lower in carriers of the A allele. Both GIP and OPN prevented cytokine-induced reduction in cell viability (apoptosis). In addition, OPN stimulated cell proliferation in insulin-secreting cells. CONCLUSIONS-These findings support beta-cell proliferative and antiapoptotic roles for GIP in addition to its action as an incretin hormone. Identification of a link between GIP and OPN may shed new light on the role of GIP in preservation of functional beta-cell mass in humans. Diabetes 60:2424-2433, 2011
  •  
5.
  • Olsson, Anders H, et al. (författare)
  • Decreased expression of genes involved in oxidative phosphorylation in human pancreatic islets from patients with type 2 diabetes.
  • 2011
  • Ingår i: European Journal of Endocrinology. - 1479-683X. ; 165, s. 589-595
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Gene expression alterations, especially in target tissues of insulin, have been associated with type 2 diabetes (T2D). Here, we examined if genes involved in oxidative phosphorylation (OXPHOS) show differential gene expression and DNA methylation in pancreatic islets from patients with T2D compared with non-diabetic donors. DESIGN AND METHODS: Gene expression was analyzed in human pancreatic islets from 55 non-diabetic donors and 9 T2D donors using microarray. RESULTS: While the expected number of OXPHOS genes with reduced gene expression is 7.21 we identified 21 down-regulated OXPHOS genes in pancreatic islets from patients with T2D using microarray analysis. This gives a ratio of observed over expected OXPHOS genes of 26.37 using a Χ(2)-test with p = 1.52•10-7. The microarray data was validated by qRT-PCR for four selected OXPHOS genes; NDUFA5, NDUFA10, COX11 and ATP6V1H. All four OXPHOS genes were significantly down-regulated in islets from patients with T2D compared with non-diabetic donors using qRT-PCR (p≤0.01). Furthermore, HbA1c levels correlated negatively with gene expression of NDUFA5, COX11 and ATP6V1H (p less than 0.05). Gene expression of NDUFA5, NDUFA10, COX11 and ATP6V1H correlated positively with glucose-stimulated insulin secretion (p less than 0.03). Finally, DNA methylation was analyzed upstream of the transcription start for NDUFA5, COX11 and ATP6V1H. However, none of the analyzed CpG sites in the three genes showed differences in DNA methylation in islets from donors with T2D compared with non-diabetic donors. CONCLUSION: Pancreatic islets from patients with T2D show decreased expression of a set of OXPHOS genes, which may lead to impaired insulin secretion.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy