SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Skelton Alasdair)) srt2:(2010-2014) srt2:(2014)"

Sökning: (WFRF:(Skelton Alasdair)) srt2:(2010-2014) > (2014)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Batki, Aniko, et al. (författare)
  • Petrogenetic significance of ocellar camptonite dykes in the Ditrau Alkaline Massif, Romania
  • 2014
  • Ingår i: Lithos. - : Elsevier BV. - 0024-4937 .- 1872-6143. ; 200, s. 181-196
  • Tidskriftsartikel (refereegranskat)abstract
    • Camptonite dykes intrude the rift-related Mesozoic igneous body of the Ditrau Alkaline Massif, Eastern Carpathians, Romania. We present and discuss mineral chemical data, major and trace elements, and the Nd isotopic compositions of the dykes in order to define their nature and origin. The dykes are classified as the clinopyroxene-bearing (camptonite-I) and clinopyroxene-free (camptonite-II) varieties. Camptonite-I consists of aluminian-ferroan diopside phenocrysts accompanied by kaersutite, subordinate Ti-rich annite, albite to oligoclase and abundant calcite-albite ocelli. Camptonite-II comprises K-rich hastingsite to magnesiohastingsite, Ti-rich annite, albite to andesine, abundant accessory titanite and apatite, and silicate ocelli filled mainly with plagioclase (An(4-34)). Age-corrected Nd-143/Nd-144 ratios vary from 0.51258 to 0.51269. The high epsilon(Nd) values of +4.0 to +6.1 which are consistent with intra-plate composition, together with light rare earth element (LREE), large ion lithophile element (LIE) and high field strength element (HFSE) enrichment in the camptonites is ascribed to the formation of small melt batches of a metasomatised sub-lithospheric mantle source. The presence of an asthenospheric 'high mu' ocean island basalt (HIMU-OIB)-type mantle component in the source region has also been revealed. A 1-4% degree of partial melting of an enriched garnet Iherzolite mantle source containing pargasitic amphibole followed by fractionation is inferred to have been involved in the generation of the camptonites. They are deduced to be parental melts to the Ditrau Alkaline Massif.
  •  
2.
  • Goodfellow, Bradley W., et al. (författare)
  • Controls of tor formation, Cairngorm Mountains, Scotland
  • 2014
  • Ingår i: Journal Of Geophysical Research: Earth Surface. - 2169-9003. ; 119:2, s. 225-246
  • Tidskriftsartikel (refereegranskat)abstract
    • Tors occur in many granitic landscapes and provide opportunities to better understand differential weathering. We assess tor formation in the Cairngorm Mountains, Scotland, by examining correlation of tor location and size with grain size and the spacing of steeply dipping joints. We infer a control on these relationships and explore its potential broader significance for differential weathering and tor formation. We also assess the relationship between the formation of subhorizontal joints in many tors and local topographic shape by evaluating principle surface curvatures from a digital elevation model of the Cairngorms. We then explore the implications of these joints for tor formation. We conclude that the Cairngorm tors have formed in kernels of relatively coarse grained granite. Tor volumes increase with grain size and the spacing of steeply dipping joints. We infer that the steeply dipping joints largely formed during pluton cooling and are more widely spaced in tor kernels because of slower cooling rates. Preferential tor formation in coarser granite with a wider joint spacing that is more easily grusified indicates that joint spacing is a dominant control on differential weathering. Sheet jointing is well developed in tors located on relatively high convex surfaces. This jointing formed after the gross topography of the Cairngorms was established and before tor emergence. The presence of closely spaced (tens of centimeters), subhorizontal sheeting joints in tors indicates that these tors, and similarly sheeted tors elsewhere, formed either after subaerial exposure of bedrock or have progressively emerged from a regolith only a few meters thick. Key Points Tors form in kernels of coarse-grained granite among finer-grained granite Wide joint spacing in tors attributable to a slow cooling rate of the granite Sheet jointing discounts tor formation within a thick regolith
  •  
3.
  • Jakobsson, Martin, et al. (författare)
  • Major earthquake at the Pleistocene-Holocene transition in Lake Vattern, southern Sweden
  • 2014
  • Ingår i: Geology. - 0091-7613 .- 1943-2682. ; 42:5, s. 379-382
  • Tidskriftsartikel (refereegranskat)abstract
    • Lake Vattern, Sweden, is within a graben that formed through rifting along the boundary between two Precambrian terrains. Geophysical mapping and geological coring show that substantial tectonic movements along the Lake Vattern graben occurred at the very onset of the Holocene. This is evident from deformation structures in the soft sediment accumulated on the lake floor. Our interpretation of these structures suggests as much as 13 m of vertical tectonic displacements along sections of a >80-km-long fault system. If these large displacements are from one tectonic event, Lake Vattern must have had an earthquake with seismic moment magnitudes to 7.5. In addition, our geophysical mapping shows large landslides along sections of the steep lake shores. Pollen analysis of sediment infillings of some of the most prominent sediment deformation structures places this major seismic event at the Younger Dryas-Preboreal transition, ca. 11.5 ka. We suggest that this event is mainly related to the rapid release of ice-sheet load following the deglaciation. This paleoseismic event in Lake Vattern ranks among the larger known intraplate tectonic events in Scandinavia and attests to the significance of glacio-isostatic unloading.
  •  
4.
  • Kleine, Barbara I., et al. (författare)
  • Preservation of blueschist-facies minerals along a shear zone by coupled metasomatism and fast-flowing CO2-bearing fluids
  • 2014
  • Ingår i: Journal of Petrology. - : Oxford University Press (OUP). - 0022-3530 .- 1460-2415. ; 55:10, s. 1905-1939
  • Tidskriftsartikel (refereegranskat)abstract
    • Two types of blue halo (types I and II) composed of blueschist-facies minerals are centered around a brittle, normal shear zone in greenschist-facies rocks on the island of Syros, Aegean Sea, Greece. The shear zone is steeply dipping and cuts a near-horizontal layer of greenschist-facies rocks (albite + epidote + actinolite + chlorite + quartz). Type I and II blue haloes are 0.3 m and c. 1m wide respectively, and are seen on both sides of the shear zone. The inner type I haloes are composed of nearly pure glaucophane schist and were formed by metasomatic addition of Na2O and SiO2, and to a lesser extent of K2O and large ion lithophile elements (LILE), coupled with loss of CaO, Al2O3 and MnO. The outer type II haloes consist of a carbonated blueschist-facies assemblage (glaucophane + calcite + phengite + epidote + garnet + quartz).These experienced only slight metasomatic changes (i.e. addition of K2O and LILE), which cannot alone explain halo formation.We present  petrological, geochemical and thermodynamic evidence that this assemblage was preserved at greenschist-facies conditions because XCO2 was elevated by flow of a CO2-bearing fluid along the shear zone, which was approximately contemporaneous with greenschist-facies hydration in the surrounding rocks. We further note that the flux of CO2-bearing fluid along the shear zone was rapid with respect to the fluid flux in the surrounding rocks. Mass-balance calculations reveal that the fluid flux within the shear zone was at least 100-2000 times greater than the fluid flux within the surrounding rocks. Mineral textures show greenschist-facies minerals replacing blueschist minerals in the type II haloes, supporting our interpretation that the blueschist-facies minerals were preserved during greenschist-facies retrogression. A simplified P-T vs XCO2 pseudosection confirms that preservation of carbonated blueschist can occur at greenschist-facies conditions in the presence of a CO2-bearing fluid.
  •  
5.
  •  
6.
  • Skelton, Alasdair, et al. (författare)
  • Changes in groundwater chemistry before two consecutive earthquakes in Iceland
  • 2014
  • Ingår i: Nature Geoscience. - 1752-0894 .- 1752-0908. ; 7:10, s. 752-756
  • Tidskriftsartikel (refereegranskat)abstract
    • Groundwater chemistry has been observed to change before earthquakes and is proposed as a precursor signal. Such changes include variations in radon count rates(1,2), concentrations of dissolved elements(3-5) and stable isotope ratios(4,5). Changes in seismicwave velocities(6), water levels in boreholes(7), micro-seismicity(8) and shear wave splitting(9) are also thought to precede earthquakes. Precursor activity has been attributed to expansion of rock volume(7,10,11). However, most studies of precursory phenomena lack sufficient data to rule out other explanations unrelated to earthquakes(12). For example, reproducibility of a precursor signal has seldom been shown and few precursors have been evaluated statistically. Here we analyse the stable isotope ratios and dissolved element concentrations of groundwater taken from a borehole in northern Iceland between 2008 and 2013. We find that the chemistry of the groundwater changed four to six months before two greater than magnitude 5 earthquakes that occurred in October 2012 and April 2013. Statistical analyses indicate that the changes in groundwater chemistry were associated with the earthquakes. We suggest that the changes were caused by crustal dilation associated with stress build-up before each earthquake, which caused different groundwater components to mix. Although the changes we detect are specific for the site in Iceland, we infer that similar processes may be active elsewhere, and that groundwater chemistry is a promising target for future studies on the predictability of earthquakes.
  •  
7.
  • Wästeby, N., et al. (författare)
  • Hydrochemical monitoring, petrological observation, and geochemical modeling of fault healing after an earthquake
  • 2014
  • Ingår i: Journal of Geophysical Research - Solid Earth. - 0148-0227 .- 2156-2202 .- 2169-9313 .- 2169-9356. ; 119:7, s. 5727-5740
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on hydrochemical monitoring, petrological observations, and geochemical modeling, we identify a mechanism and estimate a time scale for fault healing after an earthquake. Hydrochemical monitoring of groundwater samples from an aquifer, which is at an approximate depth of 1200m, was conducted over a period of 10years. Groundwater samples have been taken from a borehole (HU-01) that crosses the Húsavík-Flatey Fault (HFF) near Húsavík town, northern Iceland. After 10weeks of sampling, on 16 September 2002, an M 5.8 earthquake occurred on the Grimsey Lineament, which is approximately parallel to the HFF. This earthquake caused rupturing of a hydrological barrier resulting in an influx of groundwater from a second aquifer, which was recorded by 15–20% concentration increases for some cations and anions. This was followed by hydrochemical recovery. Based on petrological observations of tectonically exhumed fault rocks, we conclude that hydrochemical recovery recorded fault healing by precipitation of secondary minerals along fractures. Because hydrochemical recovery accelerated with time, we conclude that the growth rate of these minerals was controlled by reaction rates at mineral-water interfaces. Geochemical modeling confirmed that the secondary minerals which formed along fractures were saturated in the sampled groundwater. Fault healing and therefore hydrochemical recovery was periodically interrupted by refracturing events. Supported by field and petrographic evidence, we conclude that these events were caused by changes of fluid pressure probably coupled with earthquakes. These events became successively smaller as groundwater flux decreased with time. Despite refracturing, hydrochemical recovery reached completion 8–10years after the earthquake.
  •  
8.
  • Zhao, Zhihong, et al. (författare)
  • An assessment of the role of nonlinear reaction kinetics in parameterization of metamorphic fluid flow
  • 2014
  • Ingår i: Journal of Geophysical Research - Solid Earth. - 2169-9313 .- 2169-9356. ; 119:8, s. 6249-6262
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on inverse modeling of reaction progress data using a numerical framework that considers coupled advection and diffusion, linear and nonlinear reaction kinetics, and with effective diffusivity given by Archie's law, we show that (1) choice of reaction order has little effect (<0.3 orders of magnitude) on estimates of time-integrated and time-averaged metamorphic fluid fluxes and metamorphic fluid flow durations based on reaction progress data, (2) reaction order must be known for robust determination of time-averaged net reaction rates based on reaction progress data and that underestimation of this term by more than 3 orders of magnitude can arise from assuming linear reaction kinetics, (3) differing reaction orders between laboratory experiments and natural metamorphic systems and/or a nonlinear dependence of effective diffusivity on porosity can explain order-of-magnitude discrepancies between field-based and laboratory-based estimates of time-averaged net reaction rates, and (4) parameterization of metamorphic fluid flow is limited to time-averaged values which fail to account for the possibility that metamorphism occurs in short-lived pulses during longer time periods of metamorphic quiescence.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy