SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Smith Katherine R)) srt2:(2020-2024) srt2:(2021)"

Sökning: (WFRF:(Smith Katherine R)) srt2:(2020-2024) > (2021)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Calvin, Katherine, et al. (författare)
  • Bioenergy for climate change mitigation: Scale and sustainability
  • 2021
  • Ingår i: GCB Bioenergy. - : Wiley. - 1757-1707 .- 1757-1693. ; 13:9, s. 1346-1371
  • Forskningsöversikt (refereegranskat)abstract
    • Many global climate change mitigation pathways presented in IPCC assessment reports rely heavily on the deployment of bioenergy, often used in conjunction with carbon capture and storage. We review the literature on bioenergy use for climate change mitigation, including studies that use top-down integrated assessment models or bottom-up modelling, and studies that do not rely on modelling. We summarize the state of knowledge concerning potential co-benefits and adverse side effects of bioenergy systems and discuss limitations of modelling studies used to analyse consequences of bioenergy expansion. The implications of bioenergy supply on mitigation and other sustainability criteria are context dependent and influenced by feedstock, management regime, climatic region, scale of deployment and how bioenergy alters energy systems and land use. Depending on previous land use, widespread deployment of monoculture plantations may contribute to mitigation but can cause negative impacts across a range of other sustainability criteria. Strategic integration of new biomass supply systems into existing agriculture and forest landscapes may result in less mitigation but can contribute positively to other sustainability objectives. There is considerable variation in evaluations of how sustainability challenges evolve as the scale of bioenergy deployment increases, due to limitations of existing models, and uncertainty over the future context with respect to the many variables that influence alternative uses of biomass and land. Integrative policies, coordinated institutions and improved governance mechanisms to enhance co-benefits and minimize adverse side effects can reduce the risks of large-scale deployment of bioenergy. Further, conservation and efficiency measures for energy, land and biomass can support greater flexibility in achieving climate change mitigation and adaptation.
  •  
2.
  • Gardner, Emma, et al. (författare)
  • Field boundary features can stabilise bee populations and the pollination of mass-flowering crops in rotational systems
  • 2021
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 58:10, s. 2287-2304
  • Tidskriftsartikel (refereegranskat)abstract
    • Pollinators experience large spatiotemporal fluctuations in resource availability when mass-flowering crops are rotated with resource-poor cereal crops. Yet, few studies have considered the effect this has on pollinator population stability, nor how this might be mitigated to maintain consistent crop pollination services. We assess the potential of boundary features (standard narrow 1 m grassy margins, hedgerows and wide 4 m agri-environment margins) to support and stabilise pollinator populations and pollination service in agricultural landscapes under crop rotation. Assuming a 6-year rotation, we use a process-based pollinator model to predict yearly pollinator population size and in-crop visitation rates to oilseed rape and field bean across 117 study landscapes in England with varying amounts of boundary features. We model both ground-nesting bumblebees and solitary bees and compare the predictions including and excluding boundary features from the landscapes. Ground-nesting bumblebee populations, whose longer-lifetime colonies benefit from continuity of resources, were larger and more stable (relative to the no-features scenario) in landscapes with more boundary features. Ground-nesting solitary bee populations were also larger but not significantly more stable, except with the introduction of wide permanent agri-environment margins, due to their shorter lifetimes and shorter foraging/dispersal ranges. Crop visitation by ground-nesting bumblebees was greater and more stable in landscapes with more boundary features, partly due to increased colony growth prior to crop flowering. Time averaged crop visitation by ground-nesting solitary bees was slightly lower, due to females dividing their foraging time between boundary features and the crop. However, despite this, the minimum pollination service delivered was higher, due to the more stable delivery. Synthesis and applications. Field boundary features have an important role in stabilising pollinator populations and pollination service in rotational systems, although maintenance of larger semi-natural habitat patches may be more effective for stabilising less mobile solitary bee populations. We recommend using combinations of boundary features, accounting for pollinator range when spacing features/rotating crops, and synchronising boundary feature management with crop rotation to maximise their stabilising benefits.
  •  
3.
  • Muus, Christoph, et al. (författare)
  • Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics
  • 2021
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 27:3, s. 546-559
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiotensin-converting enzyme 2 (ACE2) and accessory proteases (TMPRSS2 and CTSL) are needed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cellular entry, and their expression may shed light on viral tropism and impact across the body. We assessed the cell-type-specific expression of ACE2, TMPRSS2 and CTSL across 107 single-cell RNA-sequencing studies from different tissues. ACE2, TMPRSS2 and CTSL are coexpressed in specific subsets of respiratory epithelial cells in the nasal passages, airways and alveoli, and in cells from other organs associated with coronavirus disease 2019 (COVID-19) transmission or pathology. We performed a meta-analysis of 31 lung single-cell RNA-sequencing studies with 1,320,896 cells from 377 nasal, airway and lung parenchyma samples from 228 individuals. This revealed cell-type-specific associations of age, sex and smoking with expression levels of ACE2, TMPRSS2 and CTSL. Expression of entry factors increased with age and in males, including in airway secretory cells and alveolar type 2 cells. Expression programs shared by ACE2(+)TMPRSS2(+) cells in nasal, lung and gut tissues included genes that may mediate viral entry, key immune functions and epithelial-macrophage cross-talk, such as genes involved in the interleukin-6, interleukin-1, tumor necrosis factor and complement pathways. Cell-type-specific expression patterns may contribute to the pathogenesis of COVID-19, and our work highlights putative molecular pathways for therapeutic intervention. An integrated analysis of over 100 single-cell and single-nucleus transcriptomics studies illustrates severe acute respiratory syndrome coronavirus 2 viral entry gene coexpression patterns across different human tissues, and shows association of age, smoking status and sex with viral entry gene expression in respiratory cell populations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy