SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Stadler Peter F.)) srt2:(2015-2019)"

Sökning: (WFRF:(Stadler Peter F.)) > (2015-2019)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Braasch, Ingo, et al. (författare)
  • The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons
  • 2016
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 48:4, s. 427-437
  • Tidskriftsartikel (refereegranskat)abstract
    • To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences.
  •  
2.
  • Huyghe, Jeroen R., et al. (författare)
  • Discovery of common and rare genetic risk variants for colorectal cancer
  • 2019
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:1, s. 76-
  • Tidskriftsartikel (refereegranskat)abstract
    • To further dissect the genetic architecture of colorectal cancer (CRC), we performed whole-genome sequencing of 1,439 cases and 720 controls, imputed discovered sequence variants and Haplotype Reference Consortium panel variants into genome-wide association study data, and tested for association in 34,869 cases and 29,051 controls. Findings were followed up in an additional 23,262 cases and 38,296 controls. We discovered a strongly protective 0.3% frequency variant signal at CHD1. In a combined meta-analysis of 125,478 individuals, we identified 40 new independent signals at P < 5 x 10(-8), bringing the number of known independent signals for CRC to similar to 100. New signals implicate lower-frequency variants, Kruppel-like factors, Hedgehog signaling, Hippo-YAP signaling, long noncoding RNAs and somatic drivers, and support a role for immune function. Heritability analyses suggest that CRC risk is highly polygenic, and larger, more comprehensive studies enabling rare variant analysis will improve understanding of biology underlying this risk and influence personalized screening strategies and drug development.
  •  
3.
  • Zamora, Juan Carlos, et al. (författare)
  • Considerations and consequences of allowing DNA sequence data as types of fungal taxa
  • 2018
  • Ingår i: IMA Fungus. - : INT MYCOLOGICAL ASSOC. - 2210-6340 .- 2210-6359. ; 9:1, s. 167-185
  • Tidskriftsartikel (refereegranskat)abstract
    • Nomenclatural type definitions are one of the most important concepts in biological nomenclature. Being physical objects that can be re-studied by other researchers, types permanently link taxonomy (an artificial agreement to classify biological diversity) with nomenclature (an artificial agreement to name biological diversity). Two proposals to amend the International Code of Nomenclature for algae, fungi, and plants (ICN), allowing DNA sequences alone (of any region and extent) to serve as types of taxon names for voucherless fungi (mainly putative taxa from environmental DNA sequences), have been submitted to be voted on at the 11th International Mycological Congress (Puerto Rico, July 2018). We consider various genetic processes affecting the distribution of alleles among taxa and find that alleles may not consistently and uniquely represent the species within which they are contained. Should the proposals be accepted, the meaning of nomenclatural types would change in a fundamental way from physical objects as sources of data to the data themselves. Such changes are conducive to irreproducible science, the potential typification on artefactual data, and massive creation of names with low information content, ultimately causing nomenclatural instability and unnecessary work for future researchers that would stall future explorations of fungal diversity. We conclude that the acceptance of DNA sequences alone as types of names of taxa, under the terms used in the current proposals, is unnecessary and would not solve the problem of naming putative taxa known only from DNA sequences in a scientifically defensible way. As an alternative, we highlight the use of formulas for naming putative taxa (candidate taxa) that do not require any modification of the ICN.
  •  
4.
  • Hamdi, Yosr, et al. (författare)
  • Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression : identification of a modifier of breast cancer risk at locus 11q22.3
  • 2017
  • Ingår i: Breast Cancer Research and Treatment. - : Springer Science and Business Media LLC. - 0167-6806 .- 1573-7217. ; 161:1, s. 117-134
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Cis-acting regulatory SNPs resulting in differential allelic expression (DAE) may, in part, explain the underlying phenotypic variation associated with many complex diseases. To investigate whether common variants associated with DAE were involved in breast cancer susceptibility among BRCA1 and BRCA2 mutation carriers, a list of 175 genes was developed based of their involvement in cancer-related pathways. Methods: Using data from a genome-wide map of SNPs associated with allelic expression, we assessed the association of ~320 SNPs located in the vicinity of these genes with breast and ovarian cancer risks in 15,252 BRCA1 and 8211 BRCA2 mutation carriers ascertained from 54 studies participating in the Consortium of Investigators of Modifiers of BRCA1/2. Results: We identified a region on 11q22.3 that is significantly associated with breast cancer risk in BRCA1 mutation carriers (most significant SNP rs228595 p = 7 × 10−6). This association was absent in BRCA2 carriers (p = 0.57). The 11q22.3 region notably encompasses genes such as ACAT1, NPAT, and ATM. Expression quantitative trait loci associations were observed in both normal breast and tumors across this region, namely for ACAT1, ATM, and other genes. In silico analysis revealed some overlap between top risk-associated SNPs and relevant biological features in mammary cell data, which suggests potential functional significance. Conclusion: We identified 11q22.3 as a new modifier locus in BRCA1 carriers. Replication in larger studies using estrogen receptor (ER)-negative or triple-negative (i.e., ER-, progesterone receptor-, and HER2-negative) cases could therefore be helpful to confirm the association of this locus with breast cancer risk.
  •  
5.
  • Schmit, Stephanie L, et al. (författare)
  • Novel Common Genetic Susceptibility Loci for Colorectal Cancer.
  • 2019
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 0027-8874 .- 1460-2105. ; 111:2, s. 146-157
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Previous genome-wide association studies (GWAS) have identified 42 loci (P < 5 × 10-8) associated with risk of colorectal cancer (CRC). Expanded consortium efforts facilitating the discovery of additional susceptibility loci may capture unexplained familial risk.Methods: We conducted a GWAS in European descent CRC cases and control subjects using a discovery-replication design, followed by examination of novel findings in a multiethnic sample (cumulative n = 163 315). In the discovery stage (36 948 case subjects/30 864 control subjects), we identified genetic variants with a minor allele frequency of 1% or greater associated with risk of CRC using logistic regression followed by a fixed-effects inverse variance weighted meta-analysis. All novel independent variants reaching genome-wide statistical significance (two-sided P < 5 × 10-8) were tested for replication in separate European ancestry samples (12 952 case subjects/48 383 control subjects). Next, we examined the generalizability of discovered variants in East Asians, African Americans, and Hispanics (12 085 case subjects/22 083 control subjects). Finally, we examined the contributions of novel risk variants to familial relative risk and examined the prediction capabilities of a polygenic risk score. All statistical tests were two-sided.Results: The discovery GWAS identified 11 variants associated with CRC at P < 5 × 10-8, of which nine (at 4q22.2/5p15.33/5p13.1/6p21.31/6p12.1/10q11.23/12q24.21/16q24.1/20q13.13) independently replicated at a P value of less than .05. Multiethnic follow-up supported the generalizability of discovery findings. These results demonstrated a 14.7% increase in familial relative risk explained by common risk alleles from 10.3% (95% confidence interval [CI] = 7.9% to 13.7%; known variants) to 11.9% (95% CI = 9.2% to 15.5%; known and novel variants). A polygenic risk score identified 4.3% of the population at an odds ratio for developing CRC of at least 2.0.Conclusions: This study provides insight into the architecture of common genetic variation contributing to CRC etiology and improves risk prediction for individualized screening.
  •  
6.
  • Thul, Peter J., et al. (författare)
  • A subcellular map of the human proteome
  • 2017
  • Ingår i: Science. - : American Association for the Advancement of Science. - 0036-8075 .- 1095-9203. ; 356:6340
  • Tidskriftsartikel (refereegranskat)abstract
    • Resolving the spatial distribution of the human proteome at a subcellular level can greatly increase our understanding of human biology and disease. Here we present a comprehensive image-based map of subcellular protein distribution, the Cell Atlas, built by integrating transcriptomics and antibody-based immunofluorescence microscopy with validation by mass spectrometry. Mapping the in situ localization of 12,003 human proteins at a single-cell level to 30 subcellular structures enabled the definition of the proteomes of 13 major organelles. Exploration of the proteomes revealed single-cell variations in abundance or spatial distribution and localization of about half of the proteins to multiple compartments. This subcellular map can be used to refine existing protein-protein interaction networks and provides an important resource to deconvolute the highly complex architecture of the human cell.
  •  
7.
  • Kutsche, Lisa K., et al. (författare)
  • Combined Experimental and System-Level Analyses Reveal the Complex Regulatory Network of miR-124 during Human Neurogenesis
  • 2018
  • Ingår i: Cell systems. - : Elsevier BV. - 2405-4712. ; 7:4, s. 438-452
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-coding RNAs regulate many biological processes including neurogenesis. The brain-enriched miR-124 has been assigned as a key player of neuronal differentiation via its complex but little understood regulation of thousands of annotated targets. To systematically chart its regulatory functions, we used CRISPR/Cas9 gene editing to disrupt all six miR-124 alleles in human induced pluripotent stem cells. Upon neuronal induction, miR-124-deleted cells underwent neurogenesis and became functional neurons, albeit with altered morphology and neurotransmitter specification. Using RNA-induced-silencing-complex precipitation, we identified 98 high-confidence miR-124 targets, of which some directly led to decreased viability. By performing advanced transcription-factor-network analysis, we identified indirect miR-124 effects on apoptosis, neuronal subtype differentiation, and the regulation of previously uncharacterized zinc finger transcription factors. Our data emphasize the need for combined experimental- and system-level analyses to comprehensively disentangle and reveal miRNA functions, including their involvement in the neurogenesis of diverse neuronal cell types found in the human brain.
  •  
8.
  • Le Duc, Diana, et al. (författare)
  • Kiwi genome provides insights into evolution of a nocturnal lifestyle
  • 2015
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Kiwi, comprising five species from the genus Apteryx, are endangered, ground-dwelling bird species endemic to New Zealand. They are the smallest and only nocturnal representatives of the ratites. The timing of kiwi adaptation to a nocturnal niche and the genomic innovations, which shaped sensory systems and morphology to allow this adaptation, are not yet fully understood. Results: We sequenced and assembled the brown kiwi genome to 150-fold coverage and annotated the genome using kiwi transcript data and non-redundant protein information from multiple bird species. We identified evolutionary sequence changes that underlie adaptation to nocturnality and estimated the onset time of these adaptations. Several opsin genes involved in color vision are inactivated in the kiwi. We date this inactivation to the Oligocene epoch, likely after the arrival of the ancestor of modern kiwi in New Zealand. Genome comparisons between kiwi and representatives of ratites, Galloanserae, and Neoaves, including nocturnal and song birds, show diversification of kiwi's odorant receptors repertoire, which may reflect an increased reliance on olfaction rather than sight during foraging. Further, there is an enrichment of genes influencing mitochondrial function and energy expenditure among genes that are rapidly evolving specifically on the kiwi branch, which may also be linked to its nocturnal lifestyle. Conclusions: The genomic changes in kiwi vision and olfaction are consistent with changes that are hypothesized to occur during adaptation to nocturnal lifestyle in mammals. The kiwi genome provides a valuable genomic resource for future genome-wide comparative analyses to other extinct and extant diurnal ratites.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14
Typ av publikation
tidskriftsartikel (14)
Typ av innehåll
refereegranskat (10)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Uhlén, Mathias (6)
Lundberg, Emma (4)
Rennert, Gad (3)
Offit, Kenneth (3)
Chang-Claude, Jenny (2)
Trichopoulou, Antoni ... (2)
visa fler...
Wolk, Alicja (2)
Schumacher, Fredrick ... (2)
Berndt, Sonja I (2)
Conti, David V (2)
Chanock, Stephen J (2)
Albanes, Demetrius (2)
Giles, Graham G (2)
Brenner, Hermann (2)
Thibodeau, Stephen N (2)
Lin, Yi (2)
Qu, Conghui (2)
Arndt, Volker (2)
Buchanan, Daniel D. (2)
Casey, Graham (2)
Chan, Andrew T. (2)
Figueiredo, Jane C. (2)
Gruber, Stephen B. (2)
Gsur, Andrea (2)
Harlid, Sophia, 1978 ... (2)
Harrison, Tabitha A. (2)
Hoffmeister, Michael (2)
Huyghe, Jeroen R. (2)
Jenkins, Mark A. (2)
Joshi, Amit D. (2)
Li, Li (2)
Moreno, Victor (2)
Murphy, Neil (2)
Newcomb, Polly A. (2)
Potter, John D. (2)
Schmit, Stephanie L. (2)
Schoen, Robert E. (2)
Slattery, Martha L. (2)
Thomas, Duncan C. (2)
Ulrich, Cornelia M. (2)
van Guelpen, Bethany (2)
White, Emily (2)
Wu, Anna H. (2)
Hsu, Li (2)
Gauderman, W James (2)
Peters, Ulrike (2)
Campbell, Peter T. (2)
Hopper, John L. (2)
Lindblom, Annika (2)
Zheng, Wei (2)
visa färre...
Lärosäte
Uppsala universitet (7)
Kungliga Tekniska Högskolan (6)
Karolinska Institutet (4)
Lunds universitet (3)
Umeå universitet (2)
Sveriges Lantbruksuniversitet (2)
visa fler...
Göteborgs universitet (1)
Naturhistoriska riksmuseet (1)
visa färre...
Språk
Engelska (14)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (8)
Naturvetenskap (7)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy