SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(WFRF:(Vogler P.)) srt2:(2005-2009)"

Search: (WFRF:(Vogler P.)) > (2005-2009)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Dempsey, M P, et al. (author)
  • Genomic deletion marking an emerging subclone of Francisella tularensis subsp. holarctica in France and the Iberian Peninsula.
  • 2007
  • In: Applied and Environmental Microbiology. - 0099-2240 .- 1098-5336. ; 73:22, s. 7465-70
  • Journal article (peer-reviewed)abstract
    • Francisella tularensis subsp. holarctica is widely disseminated in North America and the boreal and temperate regions of the Eurasian continent. Comparative genomic analyses identified a 1.59-kb genomic deletion specific to F. tularensis subsp. holarctica isolates from Spain and France. Phylogenetic analysis of strains carrying this deletion by multiple-locus variable-number tandem repeat analysis showed that the strains comprise a highly related set of genotypes, implying that these strains were recently introduced or recently emerged by clonal expansion in France and the Iberian Peninsula.
  •  
2.
  •  
3.
  • Lang, Dean H., et al. (author)
  • Bone, Muscle, and Physical Activity : Structural Equation Modeling of Relationships and Genetic Influence With Age
  • 2009
  • In: Journal of Bone and Mineral Research. - 0884-0431 .- 1523-4681. ; 24:9, s. 1608-1617
  • Journal article (peer-reviewed)abstract
    • Correlations among bone strength, muscle mass, and physical activity suggest that these traits may be modulated by each other and/or by common genetic and/or environmental mechanisms. This study used structural equation modeling (SEM) to explore the extent to which select genetic loci manifest their pleiotropic effects through functional adaptations commonly referred to as Wolff's law. Quantitative trait locus (QTL) analysis was used to identify regions of chromosomes that simultaneously influenced skeletal mechanics, muscle mass, and/or activity-related behaviors in young and aged B6xD2 second-generation (F-2) mice of both sexes. SEM was used to further study relationships among select QTLs, bone mechanics, muscle mass, and measures of activity. The SEM approach provided the means to numerically decouple the musculoskeletal effects of mechanical loading from the effects of other physiological processes involved in locomotion and physical activity. It was found that muscle mass was a better predictor of bone mechanics in young females, whereas mechanical loading was a better predictor of bone mechanics in older females. An activity-induced loading factor positively predicted the mechanical behavior of hindlimb bones in older males; contrarily, load-free locomotion (i.e., the remaining effects after removing the effects of loading) negatively predicted bone performance. QTLs on chromosomes 4, 7, and 9 seem to exert some of their influence on bone through actions consistent with Wolff's Law. Further exploration of these and other mechanisms through which genes function will aid in development of individualized interventions able to exploit the numerous complex pathways contributing to skeletal health. J Bone Miner Res 2009;24:1608-1617. Published online on April 27, 2009; doi: 10.1359/JBMR.090418
  •  
4.
  • Lionikas, A., et al. (author)
  • Genetic determinants of weight of fast- and slow-twitch skeletal muscle in 500-day-old mice of the C57BL/6J and DBA/2J lineage.
  • 2005
  • In: Physiological Genomics. - : American Physiological Society. - 1094-8341 .- 1531-2267. ; 21:2, s. 184-192
  • Journal article (peer-reviewed)abstract
    • C57BL/6J (B6) and DBA/2J (D2) strains and two derivative populations, BXD recombinant inbred strains (BXD RIs) and B6D2F2, were used to explore genetic basis for variation in muscle weight at 500 days of age. In parallel with findings in 200-day-old mice (Lionikas A, Blizard DA, Vandenbergh DJ, Glover MG, Stout JT, Vogler GP, McClearn GE, and Larsson L. Physiol Genomics 16: 141-152, 2003), weight of slow-twitch soleus, mixed gastrocnemius, and fast-twitch tibialis anterior (TA) and extensor digitorum longus (EDL) muscles was 13-22% greater (P < 0.001) in B6 than in D2. Distribution of BXD RI strain means indicated that genetic influence on muscle weight (strain effect P < 0.001, all muscles) was of polygenic origin, and effect of genetic factors differed between males and females (strain-by-sex interaction: P < 0.01 for soleus, EDL; P < 0.05 for TA, gastrocnemius). Linkage analyses in B6D2F2 population identified QTL affecting muscle weight on Chr 1, 2, 6, and 9. Pleiotropic influences were observed for QTL on Chr 1 (soleus, TA), 2 (TA, EDL, gastrocnemius), and 9 (soleus, TA, EDL) and were not related to muscle type (fast/slow-twitch) or function (flexor/extensor). Effect of QTL on Chr 9 on soleus muscle was male specific. QTL on Chr 2 and 6 were previously observed at 200 days of age, whereas QTL on Chr 1 and 9 are novel muscle weight QTL. In summary, muscle weight in B6/D2 lineage is affected by a polygenic system that has variable influences at different ages, between males and females, and across muscles in a manner independent of muscle type.
  •  
5.
  • Lionikas, Arimantas, et al. (author)
  • Genetic determinants of weight of fast- och slow-twitch skeletal muscles in old mice
  • 2006
  • In: Mammalian Genome Genes and Phenotypes. ; 17:6, s. 615-628
  • Journal article (peer-reviewed)abstract
    • The main goal of the study was to explore the genetic architecture underlying muscle weight in old mice. Weight of soleus, tibialis anterior (TA), extensor digitorum longus (EDL), and gastrocnemius muscles was measured in the C57BL/6J (B6) and DBA/2J (D2) strains and derivative generations: a panel of the BXD recombinant inbred (RI) strains and a B6D2 F(2) intercross at the age of 800 days. The between-strain difference in muscle weight (B6 > D2) ranged between 16% and 38%. Linkage analysis identified suggestive quantitative trait loci (QTL) on Chromosomes (Chr) 2, 6, 7, 8, 19, and X that influenced muscle weight in the 800-day-old group. Comparison of weights at 200, 500, and 800 days revealed a variable effect of age among the four muscles. Linkage analysis in the B6D2 F(2) population combined across the three different age groups identified muscle-, sex-, and age-specific QTL on Chr 1, 2, 3, 5, 6, 8, 9, 11, 13, 17, X, and Y. Genetic factors that influence the rate of weight change (within-strain weight difference at two ages) over the lifespan of BXD RIs were mapped to the markers D2Mit369 and D3Mit130 at the genome-wide p < 0.05 for TA muscle in males (between 200 and 800 days) and females (between 500 and 800 days), respectively. Analysis of all age groups supported previous findings that the genetic effects may be muscle-, age-, and sex-specific.
  •  
6.
  •  
7.
  • Vogler, Amy J, et al. (author)
  • Phylogeography of Francisella tularensis : global expansion of a highly fit clone
  • 2009
  • In: Journal of Bacteriology. - : American Society for Microbiology. - 0021-9193 .- 1098-5530. ; 191:8, s. 2474-2484
  • Journal article (peer-reviewed)abstract
    • Francisella tularensis contains several highly pathogenic subspecies, including Francisella tularensis subsp. holarctica, whose distribution is circumpolar in the northern hemisphere. The phylogeography of these subspecies and their subclades was examined using whole-genome single nucleotide polymorphism (SNP) analysis, high-density microarray SNP genotyping, and real-time-PCR-based canonical SNP (canSNP) assays. Almost 30,000 SNPs were identified among 13 whole genomes for phylogenetic analysis. We selected 1,655 SNPs to genotype 95 isolates on a high-density microarray platform. Finally, 23 clade- and subclade-specific canSNPs were identified and used to genotype 496 isolates to establish global geographic genetic patterns. We confirm previous findings concerning the four subspecies and two Francisella tularensis subsp. tularensis subpopulations and identify additional structure within these groups. We identify 11 subclades within F. tularensis subsp. holarctica, including a new, genetically distinct subclade that appears intermediate between Japanese F. tularensis subsp. holarctica isolates and the common F. tularensis subsp. holarctica isolates associated with the radiation event (the B radiation) wherein this subspecies spread throughout the northern hemisphere. Phylogenetic analyses suggest a North American origin for this B-radiation clade and multiple dispersal events between North America and Eurasia. These findings indicate a complex transmission history for F. tularensis subsp. holarctica.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view