SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Wahlund Jan Erik)) srt2:(2010-2014)"

Sökning: (WFRF:(Wahlund Jan Erik)) > (2010-2014)

  • Resultat 1-10 av 54
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lavvas, Panayotis, et al. (författare)
  • Aerosol growth in Titan's ionosphere
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 110:8, s. 2729-2734
  • Tidskriftsartikel (refereegranskat)abstract
    • Photochemically produced aerosols are common among the atmospheres of our solar system and beyond. Observations and models have shown that photochemical aerosols have direct consequences on atmospheric properties as well as important astrobiological ramifications, but the mechanisms involved in their formation remain unclear. Here we show that the formation of aerosols in Titan's upper atmosphere is directly related to ion processes, and we provide a complete interpretation of observed mass spectra by the Cassini instruments from small to large masses. Because all planetary atmospheres possess ionospheres, we anticipate that the mechanisms identified here will be efficient in other environments as well, modulated by the chemical complexity of each atmosphere.
  •  
2.
  • Arridge, Christopher S., et al. (författare)
  • Uranus Pathfinder : exploring the origins and evolution of Ice Giant planets
  • 2012
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 33:2-3, s. 753-791
  • Tidskriftsartikel (refereegranskat)abstract
    • The "Ice Giants" Uranus and Neptune are a different class of planet compared to Jupiter and Saturn. Studying these objects is important for furthering our understanding of the formation and evolution of the planets, and unravelling the fundamental physical and chemical processes in the Solar System. The importance of filling these gaps in our knowledge of the Solar System is particularly acute when trying to apply our understanding to the numerous planetary systems that have been discovered around other stars. The Uranus Pathfinder (UP) mission thus represents the quintessential aspects of the objectives of the European planetary community as expressed in ESA's Cosmic Vision 2015-2025. UP was proposed to the European Space Agency's M3 call for medium-class missions in 2010 and proposed to be the first orbiter of an Ice Giant planet. As the most accessible Ice Giant within the M-class mission envelope Uranus was identified as the mission target. Although not selected for this call the UP mission concept provides a baseline framework for the exploration of Uranus with existing low-cost platforms and underlines the need to develop power sources suitable for the outer Solar System. The UP science case is based around exploring the origins, evolution, and processes at work in Ice Giant planetary systems. Three broad themes were identified: (1) Uranus as an Ice Giant, (2) An Ice Giant planetary system, and (3) An asymmetric magnetosphere. Due to the long interplanetary transfer from Earth to Uranus a significant cruise-phase science theme was also developed. The UP mission concept calls for the use of a Mars Express/Rosetta-type platform to launch on a Soyuz-Fregat in 2021 and entering into an eccentric polar orbit around Uranus in the 2036-2037 timeframe. The science payload has a strong heritage in Europe and beyond and requires no significant technology developments.
  •  
3.
  •  
4.
  • Coates, A. J., et al. (författare)
  • Recent Results from Titan's Ionosphere
  • 2011
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 162:1-4, s. 85-111
  • Forskningsöversikt (refereegranskat)abstract
    • Titan has the most significant atmosphere of any moon in the solar system, with a pressure at the surface larger than the Earth's. It also has a significant ionosphere, which is usually immersed in Saturn's magnetosphere. Occasionally it exits into Saturn's magnetosheath. In this paper we review several recent advances in our understanding of Titan's ionosphere, and present some comparisons with the other unmagnetized objects Mars and Venus. We present aspects of the ionospheric structure, chemistry, electrodynamic coupling and transport processes. We also review observations of ionospheric photoelectrons at Titan, Mars and Venus. Where appropriate, we mention the effects on ionospheric escape.
  •  
5.
  • Cravens, T. E., et al. (författare)
  • Dynamical and magnetic field time constants for Titan's ionosphere : Empirical estimates and comparisons with Venus
  • 2010
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 115:8, s. A08319-
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma in Titan's ionosphere flows in response to forcing from thermal pressure gradients, magnetic forces, gravity, and ion-neutral collisions. This paper takes an empirical approach to the ionospheric dynamics by using data from Cassini instruments to estimate pressures, flow speeds, and time constants on the dayside and nightside. The plasma flow speed relative to the neutral gas speed is approximately 1 m s(-1) near an altitude of 1000 km and 200 m s(-1) at 1500 km. For comparison, the thermospheric neutral wind speed is about 100 m s(-1). The ionospheric plasma is strongly coupled to the neutrals below an altitude of about 1300 km. Transport, vertical or horizontal, becomes more important than chemistry in controlling ionospheric densities above about 1200-1500 km, depending on the ion species. Empirical estimates are used to demonstrate that the structure of the ionospheric magnetic field is determined by plasma transport (including neutral wind effects) for altitudes above about 1000 km and by magnetic diffusion at lower altitudes. The paper suggests that a velocity shear layer near 1300 km could exist at some locations and could affect the structure of the magnetic field. Both Hall and polarization electric field terms in the magnetic induction equation are shown to be locally important in controlling the structure of Titan's ionospheric magnetic field. Comparisons are made between the ionospheric dynamics at Titan and at Venus.
  •  
6.
  • Cui, J., et al. (författare)
  • Ion transport in Titan's upper atmosphere
  • 2010
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 115, s. A06314-
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on a combined Cassini data set including Ion Neutral Mass Spectrometer, Radio Plasma Wave Science, and Magnetometer measurements made during nine close encounters of the Cassini spacecraft with Titan, we investigate the electron ( or total ion) distribution in the upper ionosphere of the satellite between 1250 and 1600 km. A comparison of the measured electron distribution with that in diffusive equilibrium suggests global ion escape from Titan with a total ion loss rate of similar to(1.7 +/- 0.4) x 10(25) s(-1). Significant diurnal variation in ion transport is implied by the data, characterized by ion outflow at the dayside and ion inflow at the nightside, especially below similar to 1400 km. This is interpreted as a result of day-to-night ion transport, with a horizontal transport rate estimated to be similar to(1.4 +/- 0.5) x 10(24) s(-1). Such an ion flow is likely to be an important source for Titan's nightside ionosphere, as proposed in Cui et al. [2009a].
  •  
7.
  • Edberg, Niklas, et al. (författare)
  • Electron density and temperature measurements in the cold plasma environment of Titan : Implications for atmospheric escape
  • 2010
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 37:20, s. L20105-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present electron temperature and density measurements of Titan's cold ionospheric plasma from the Langmuir probe instrument on Cassini from 52 flybys. An expression of the density as a function of temperature is presented for altitudes below two Titan radii. The density falls off exponentially with increased temperature as log(n(e)) = -2.0log(T-e) + 0.6 on average around Titan. We show that this relation varies with location around Titan as well as with the solar illumination direction. Significant heating of the electrons appears to take place on the night/wake side of Titan as the density-temperature relation is less steep there. Furthermore, we show that the magnetospheric ram pressure is not balanced by the thermal and magnetic pressure in the topside ionosphere and discuss its implications for plasma escape. The cold ionospheric plasma of Titan extends to higher altitudes in the wake region, indicating the loss of atmosphere down the induced magnetospheric tail.
  •  
8.
  • Edberg, Niklas J. T., et al. (författare)
  • Extreme densities in Titan's ionosphere during the T85 magnetosheath encounter
  • 2013
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 40:12, s. 2879-2883
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Cassini Langmuir probe measurements of the highest electron number densities ever reported from the ionosphere of Titan. The measured density reached 4310cm(-3) during the T85 Titan flyby. This is at least 500cm(-3) higher than ever observed before and at least 50% above the average density for similar solar zenith angles. The peak of the ionospheric density is not reached on this flyby, making the maximum measured density a lower limit. During this flyby, we also report that an impacting coronal mass ejection (CME) leaves Titan in the magnetosheath of Saturn, where it is exposed to shocked solar wind plasma for at least 2 h 45 min. We suggest that the solar wind plasma in the magnetosheath during the CME conditions significantly modifies Titan's ionosphere by an addition of particle impact ionization by precipitating protons.
  •  
9.
  • Edberg, Niklas J. T., et al. (författare)
  • Solar cycle modulation of Titan's ionosphere
  • 2013
  • Ingår i: Journal of Geophysical Research-Space Physics. - : American Geophysical Union (AGU). - 2169-9380. ; 118:8, s. 5255-5264
  • Tidskriftsartikel (refereegranskat)abstract
    • During the six Cassini Titan flybys T83-T88 (May 2012 to November 2012) the electron density in the ionospheric peak region, as measured by the radio and plasma wave science instrument/Langmuir probe, has increased significantly, by 15-30%, compared to previous average. These measurements suggest that a longterm change has occurred in the ionosphere of Titan, likely caused by the rise to the new solar maximum with increased EUV fluxes. We compare measurements from TA, TB, and T5, from the declining phase of solar cycle 23 to the recent T83-T88 measurements during cycle 24, since the solar irradiances from those two intervals are comparable. The peak electron densities normalized to a common solar zenith angle N-norm from those two groups of flybys are comparable but increased compared to the solar minimum flybys (T16-T71). The integrated solar irradiance over the wavelengths 1-80nm, i.e., the solar energy flux, F-e, correlates well with the observed ionospheric peak density values. Chapman layer theory predicts that NnormFek, with k=0.5. We find observationally that the exponent k=0.540.18. Hence, the observations are in good agreement with theory despite the fact that many assumptions in Chapman theory are violated. This is also in good agreement with a similar study by Girazian and Withers (2013) on the ionosphere of Mars. We use this power law to estimate the peak electron density at the subsolar point of Titan during solar maximum conditions and find it to be about 6500cm(-3), i.e., 85-160% more than has been measured during the entire Cassini mission.
  •  
10.
  • Edberg, Niklas J. T., et al. (författare)
  • Structured ionospheric outflow during the Cassini T55-T59 Titan flybys
  • 2011
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 59:8, s. 788-797
  • Tidskriftsartikel (refereegranskat)abstract
    • During the final three of the five consecutive and similar Cassini Titan flybys T55-T59 we observe a region characterized by high plasma densities (electron densities of 1-8 cm(-3)) in the tail/nightside of Titan. This region is observed progressively farther downtail from pass to pass and is interpreted as a plume of ionospheric plasma escaping Titan, which appears steady in both location and time. The ions in this plasma plume are moving in the direction away from Titan and are a mixture of both light and heavy ions with composition revealing that their origin are in Titan's ionosphere, while the electrons are more isotropically distributed. Magnetic field measurements indicate the presence of a current sheet at the inner edge of this region. We discuss the mechanisms behind this outflow, and suggest that it could be caused by ambipolar diffusion, magnetic moment pumping or dispersive Alfven waves.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 54
Typ av publikation
tidskriftsartikel (48)
konferensbidrag (2)
forskningsöversikt (2)
doktorsavhandling (1)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (52)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Wahlund, Jan-Erik (48)
Kurth, W. S. (12)
Gurnett, D. A. (11)
Dougherty, M. K. (10)
Cravens, T. E. (9)
Ågren, Karin (8)
visa fler...
Coates, A. J. (8)
Mitchell, D. G. (7)
Edberg, Niklas J. T. (6)
Bertucci, C. (6)
Garnier, P. (6)
Edberg, Niklas (6)
Morooka, Michiko W. (6)
Morooka, Michiko (5)
Krupp, N. (5)
Luhmann, J. G. (5)
Waite, J. H. (5)
Ma, Y. -J (5)
Waite, J. H., Jr. (5)
Ågren, K. (5)
Persoon, A. M. (5)
Wahlund, Lars-Olof (4)
Modolo, R (4)
Basun, Hans (4)
Cederholm, Tommy (4)
Vedin, Inger (4)
Palmblad, Jan (4)
Galand, Marina (4)
Morooka, M. (4)
Farrell, W. M. (4)
Freund-Levi, Yvonne, ... (4)
Lewis, G. R. (4)
Cui, J. (4)
Faxén Irving, Gerd (4)
Shebanits, Oleg (4)
Wellbrock, A. (4)
Ulusen, D. (4)
Crary, F. J. (4)
Hjorth, Erik (4)
Krimigis, S. M. (4)
Eriksson, Anders (3)
Russell, C. T. (3)
Young, D. T. (3)
Cowley, S. W. H. (3)
Galand, M. (3)
Mandt, K. E. (3)
Yelle, R. V. (3)
Jones, G. H. (3)
Mandt, K. (3)
Schultzberg, Mariann ... (3)
visa färre...
Lärosäte
Uppsala universitet (54)
Örebro universitet (4)
Karolinska Institutet (4)
Kungliga Tekniska Högskolan (1)
Luleå tekniska universitet (1)
Stockholms universitet (1)
Språk
Engelska (54)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (36)
Medicin och hälsovetenskap (4)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy