SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Welsh Nils)) srt2:(1995-1999)"

Sökning: (WFRF:(Welsh Nils)) > (1995-1999)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Welsh, Michael, et al. (författare)
  • Transgeneic mice expressing the Shb adaptor protein under the control of  rat insulin promoter exhibit altered viability of pancreatic islet cells
  • 1999
  • Ingår i: Molecular Medicine. - 1076-1551. ; 5:3, s. 169-180
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUNDThe Src-homology 2 domain-containing adaptor protein Shb was recently cloned as a serum-inducible gene in the insulin-producing beta-TC1 cell line. Subsequent studies have revealed an involvement of Shb for apoptosis in NIH3T3 fibroblasts and differentiation in the neuronal PC12 cells. To assess a role of Shb for beta-cell function, transgenic mice utilizing the rat insulin promoter to drive expression of Shb were generated.MATERIALS AND METHODSA gene construct allowing the Shb cDNA to be expressed from the rat insulin 2 promoter was microinjected into fertilized mouse oocytes and implanted into pseudopregnant mice. Mice containing a low copy number of this transgene were bred and used for further experimentation. Shb expression was determined by Western blot analysis. The insulin-positive area of whole pancreas, insulin secretion of isolated islets and islet cell apoptosis, glucose tolerance tests, and in vivo sensitivity to multiple injections of the beta-cell toxin streptozotocin were determined in control CBA and Shb-transgenic mice.RESULTSWestern blot analysis revealed elevated islet content of the Shb protein. Shb-transgenic mice displayed enhanced glucose-disappearance rates in response to an intravenous glucose injection. The relative pancreatic beta-cell area neonatally and at 6 months of age were increased in the Shb-transgenic mice. Islets isolated from Shb-transgenic mice showed enhanced insulin secretion in response to glucose and increased insulin and DNA content. Apoptosis was increased in islets isolated from Shb-transgenic mice compared with control islets both under basal conditions and after incubation with IL-1 beta + IFN-gamma. Rat insulinoma RINm5F cells overexpressing Shb displayed decreased viability during culture in 0.1% serum and after exposure to a cytotoxic dose of nicotinamide. Shb-transgenic mice injected with multiple doses of streptozotocin showed increased blood glucose values compared with the corresponding controls, suggesting increased in vivo susceptibility to this toxin.CONCLUSIONThe results suggest that Shb has dual effects on beta-cell growth: whereas Shb increases beta-cell formation during late embryonal stages, Shb also enhances beta-cell death under certain stressful conditions and may thus contribute to beta-cell destruction in type 1 diabetes.
  •  
2.
  •  
3.
  • Wentzel, Parri, et al. (författare)
  • Developmental damage, increased lipid peroxidation, diminished cyclooxygenase-2 gene expression, and lowered PGE-2 levels in rat embryos exposed to a diabetic environment
  • 1999
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 48:4, s. 813-820
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous experimental studies suggest that diabetic embryopathy is associated with an excess of radical oxygen species (ROS), as well as with a disturbance of prostaglandin (PG) metabolism. We aimed to investigate the relationship between these pathways and used hyperglycemia in vitro (embryo culture for 24-48 h) and maternal diabetes in vivo to affect embryonic development. Subsequently, we assessed lipid peroxidation and gene expression of cyclooxygenase (COX)-1 and -2 and measured the concentration of prostaglandin E2 (PGE2) in embryos and membranes. Both hyperglycemia in vitro and maternal diabetes in vivo caused embryonic dysmorphogenesis and increased embryonic levels of 8-epi-PGF2alpha, an indicator of lipid peroxidation. Addition of N-acetylcysteine (NAC) to the culture medium normalized the morphology and 8-epi-PGF2alpha concentration of the embryos exposed to high glucose. Neither hyperglycemia nor diabetes altered COX-1 expression, but embryonic COX-2 expression was diminished on gestational day 10. The PGE2 concentration of day 10 embryos and membranes was decreased after exposure to high glucose in vitro or diabetes in vivo. In vitro addition of NAC to high glucose cultures largely rectified morphology and restored PGE2 concentration, but without normalizing the COX-2 expression in embryos and membranes. Hyperglycemia/diabetes-induced downregulation of embryonic COX-2 gene expression may be a primary event in diabetic embryopathy, leading to lowered PGE2 levels and dysmorphogenesis. Antioxidant treatment does not prevent the decrease in COX-2 mRNA levels but restores PGE2 concentrations, suggesting that diabetes-induced oxidative stress aggravates the loss of COX-2 activity. This may explain in part the antiteratogenic effect of antioxidant treatment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy