SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Zha Yinghua)) srt2:(2017)"

Sökning: (WFRF:(Zha Yinghua)) > (2017)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berga, Mercè, et al. (författare)
  • Functional and Compositional Stability of Bacterial Metacommunities in Response to Salinity Changes
  • 2017
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Disturbances and environmental change are important factors determining the diversity,composition, and functioning of communities. However, knowledge about how naturalbacterial communities are affected by such perturbations is still sparse. We performeda whole ecosystem manipulation experiment with freshwater rock pools where weapplied salinity disturbances of different intensities. The aim was to test how thecompositional and functional resistance and resilience of bacterial communities,alpha- and beta-diversity and the relative importance of stochastic and deterministiccommunity assembly processes changed along a disturbance intensity gradient.We found that bacterial communities were functionally resistant to all salinity levels (3, 6, and 12 psu) and compositionally resistant to a salinity increase to 3 psu andresilient to increases of 6 and 12 psu. Increasing salinities had no effect on local richnessand evenness, beta-diversity and the proportion of deterministically vs. stochasticallyassembled communities. Our results show a high functional and compositional stabilityof bacterial communities to salinity changes of different intensities both at localand regional scales, which possibly reflects long-term adaptation to environmentalconditions in the study system.
  •  
2.
  • Svanbäck, Richard, et al. (författare)
  • The interaction between predation risk and food ration on behavior and morphology of Eurasian perch
  • 2017
  • Ingår i: Ecology and Evolution. - : Wiley. - 2045-7758. ; 7:20, s. 8567-8577
  • Tidskriftsartikel (refereegranskat)abstract
    • The risk of both predation and food level has been shown to affect phenotypic development of organisms. However, these two factors also influence animal behavior that in turn may influence phenotypic development. Hence, it might be difficult to disentangle the behavioral effect from the predator or resource-level effects. This is because the presence of predators and high resource levels usually results in a lower activity, which in turn affects energy expenditure that is used for development and growth. It is therefore necessary to study how behavior interacts with changes in body shape with regard to resource density and predators. Here, we use the classic predator-induced morphological defense in fish to study the interaction between predator cues, resource availability, and behavioral activity with the aim to determine their relative contribution to changes in body shape. We show that all three variables, the presence of a predator, food level, and activity, both additively and interactively, affected the body shape of perch. In general, the presence of predators, lower swimming activity, and higher food levels induced a deep body shape, with predation and behavior having similar effect and food treatment the smallest effect. The shape changes seemed to be mediated by changes in growth rate as body condition showed a similar effect as shape with regard to food-level and predator treatments. Our results suggests that shape changes in animals to one environmental factor, for example, predation risk, can be context dependent, and depend on food levels or behavioral responses. Theoretical and empirical studies should further explore how this context dependence affects fitness components such as resource gain and mortality and their implications for population dynamics.
  •  
3.
  • Zha, Yinghua, 1987- (författare)
  • Assembly of Gut Microbial Communities in Freshwater Fish and Their Roles in Fish Condition
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Animal hosts provide associated microorganisms with suitable ecological niches in their intestines. Microbes help their hosts to digest food, protect against pathogens, and influence the host’s metabolisms. Compositional variation of gut microbial communities is common among hosts, and may affect the health status of hosts. Diet and genetic factors are well known to influence the assembly of gut microbial communities. This thesis focuses on disentangling the contributions of factors including host genetics (sex), diet, environment, and other ecological processes to the assembly of gut microbial communities in freshwater fish. The association between gut microbial communities and fish condition is also evaluated in this thesis.Applying metacommunity theory, we found environmental factors including fish habitat, fish species, their diet, dispersal factors including microbes from fish diet, and ecological drift contributed to the assembly of fish gut microbial communities. The proportion of their contribution varied between fish species, where ecological drift explained more in perch than in roach.Under natural conditions fish populations face the risk of predation, which can induce competition and impose predation stress within prey individuals. This can therefore lead to changes in their diet qualities and quantities. In this thesis, it was shown that fish diet in terms of qualities and quantities significantly influenced the overall gut microbial composition, and this influence was dependent on fish sex, a host genetic factor. Predation stress was also suggested to significantly decrease the species richness. Furthermore, when fish were experiencing a diet shift, we showed that different bacterial phyla from novel food had different colonization success in the intestine, and this colonization success was positively influenced by predation stress. Fish condition was suggested in this thesis to be affected by gut microbial composition, especially by the contributions of the bacterial phyla Tenericutes and Actinobacteria.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy