SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Zhao S)) lar1:(slu) srt2:(2015-2019)"

Sökning: (WFRF:(Zhao S)) lar1:(slu) > (2015-2019)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Alström, Per, et al. (författare)
  • Integrative taxonomy of the Plain-backed Thrush (Zoothera mollissima) complex (Aves, Turdidae) reveals cryptic species, including a new species.
  • 2016
  • Ingår i: Avian research. - : Elsevier BV. - 2053-7166. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The Plain-backed Thrush Zoothera mollissima breeds in the Himalayas and mountains of central China. It was long considered conspecific with the Long-tailed Thrush Zoothera dixoni, until these were shown to be broadly sympatric. Methods: We revise the Z. mollissima–Z. dixoni complex by integrating morphological, acoustic, genetic (two mito- chondrial and two nuclear markers), ecological and distributional datasets. Results: In earlier field observations, we noted two very different song types of“Plain-backed”Thrush segregated by breeding habitat and elevation. Further integrative analyses congruently identify three groups: an alpine breeder in the Himalayas and Sichuan, China (“Alpine Thrush”); a forest breeder in the eastern Himalayas and northwest Yunnan (at least), China (“Himalayan Forest Thrush”); and a forest breeder in central Sichuan (“Sichuan Forest Thrush”). Alpine and Himalayan Forest Thrushes are broadly sympatric, but segregated by habitat and altitude, and the same is prob- ably true also for Alpine and Sichuan Forest Thrushes. These three groups differ markedly in morphology and songs. In addition, DNA sequence data from three non-breeding specimens from Yunnan indicate that yet another lineage exists (“Yunnan Thrush”). However, we find no consistent morphological differences from Alpine Thrush, and its breed- ing range is unknown. Molecular phylogenetic analyses suggest that all four groups diverged at least a few million years ago, and identify Alpine Thrush and the putative “Yunnan Thrush” as sisters, and the two forest taxa as sisters. Cytochrome b divergences among the four Z. mollissima sensu lato (s.l.) clades are similar to those between any of them and Z. dixoni, and exceed that between the two congeneric outgroup species. We lectotypify the name Oreocin- cla rostrata Hodgson, 1845 with the Z. mollissima sensu stricto (s.s.) specimen long considered its type. No available name unambiguously pertains to the Himalayan Forest Thrush. Conclusions: The Plain-backed Thrush Z. mollissima s.l. comprises at least three species: Alpine Thrush Z. mollissima s.s., with a widespread alpine breeding distribution; Sichuan Forest Thrush Z. griseiceps, breeding in central Sichuan forests; and Himalayan Forest Thrush, breeding in the eastern Himalayas and northwest Yunnan (at least), which is described herein as a new species. “Yunnan Thrush” requires further study.
  •  
4.
  • Zhao, Haiyu, et al. (författare)
  • Modulation of DNA Repair Systems in Blind Cavefish during Evolution in Constant Darkness
  • 2018
  • Ingår i: Current Biology. - : Cell Press. - 0960-9822 .- 1879-0445. ; 28:20, s. 3229-3243
  • Tidskriftsartikel (refereegranskat)abstract
    • How the environment shapes the function and evolution of DNA repair systems is poorly understood. In a comparative study using zebrafish and the Somalian blind cavefish, Phreatichthys andruzzii, we reveal that during evolution for millions of years in continuous darkness, photoreactivation DNA repair function has been lost in P. andruzzii. We demonstrate that this loss results in part from loss-of-function mutations in pivotal DNA-repair genes. Specifically, C-terminal truncations in P. andruzzii DASH and 6-4 photolyase render these proteins predominantly cytoplasmic, with consequent loss in their functionality. In addition, we reveal a general absence of light-, UV-, and ROS-induced expression of P. andruzzii DNA-repair genes. This results from a loss of function of the D-box enhancer element, which coordinates and enhances DNA repair in response to sunlight. Our results point to P. andruzzii being the only species described, apart from placental mammals, that lacks the highly evolutionary conserved photoreactivation function. We predict that in the DNA repair systems of P. andruzzii, we may be witnessing the first stages in a process that previously occurred in the ancestors of placental mammals during the Mesozoic era.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy